北极拉普捷夫海沉积物痕量金属赋存形态及富集机制

粟华强, 王小静, 任艺君, 刘焱光. 北极拉普捷夫海沉积物痕量金属赋存形态及富集机制[J]. 海洋地质与第四纪地质, 2022, 42(4): 61-72. doi: 10.16562/j.cnki.0256-1492.2022012701
引用本文: 粟华强, 王小静, 任艺君, 刘焱光. 北极拉普捷夫海沉积物痕量金属赋存形态及富集机制[J]. 海洋地质与第四纪地质, 2022, 42(4): 61-72. doi: 10.16562/j.cnki.0256-1492.2022012701
SU Huaqiang, WANG Xiaojing, REN Yijun, LIU Yanguang. Speciation and enrichment of trace metals in Laptev Sea shelf sediment[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 61-72. doi: 10.16562/j.cnki.0256-1492.2022012701
Citation: SU Huaqiang, WANG Xiaojing, REN Yijun, LIU Yanguang. Speciation and enrichment of trace metals in Laptev Sea shelf sediment[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 61-72. doi: 10.16562/j.cnki.0256-1492.2022012701

北极拉普捷夫海沉积物痕量金属赋存形态及富集机制

  • 基金项目: 国家自然科学基金项目“末次冰期以来白令海峡开合的沉积记录及模式验证”(42176245),“末次冰消期以来北极东西伯利亚陆架对快速气候变化的响应”(42130412);山东省重大科技创新工程专项(2018SDKJ0104-3);南北极环境综合考察与评估专项(CHINARE-03-02)
详细信息
    作者简介: 粟华强(1996—),男,硕士研究生,主要从事海洋地质研究,E-mail:suhq@fio.org.cn
    通讯作者: 刘焱光(1975—),男,研究员,主要从事北极海洋地质研究,E-mail:yanguangliu@fio.org.cn
  • 中图分类号: P736.4

Speciation and enrichment of trace metals in Laptev Sea shelf sediment

More Information
  • 痕量金属在海洋生物地球化学循环中发挥着重要作用,参与各种海洋生物、化学和地质过程,对于认识海洋环境变迁具有重要意义。本文针对北极拉普捷夫海陆架–陆坡断面的4个沉积物短柱,开展了痕量金属元素(Mo、U、V、Cu、Co、Ni)总量及其赋存形态研究,同时结合沉积物粒度、有机碳含量等相关参数,探讨了拉普捷夫海沉积物中痕量金属的分布特征及其主控因素。采用改进的BCR连续提取法对金属元素进行了化学形态分析,分离出弱酸溶态、可还原态、可氧化态和残渣态4种金属相态,结合研究区物质供应、河流输入、洋流状况等特点,尝试建立了痕量金属在沉积物中的富集埋藏机制。结果表明,研究区痕量金属总量表现出陆坡区高于陆架区的特点,元素相关性分析显示痕量金属在沉积物中的积累主要受铁锰氧化物的清除作用和陆源河流输入的影响。痕量金属形态提取结果表明,金属元素主要以残渣态存在,可提取态中可还原态占比最高且其含量由陆架向陆坡增加。痕量金属由陆架向海盆的迁移、富集概括为受铁锰氧化物控制的“shelf-to-basin shuttling”机制,同时受到沉积物再悬浮作用影响。

  • 加载中
  • 图 1  研究区多管采样位置分布图

    Figure 1. 

    图 2  形态提取实验流程

    Figure 2. 

    图 3  基于谢帕德分类法的四个多管样沉积物粒度图

    Figure 3. 

    图 4  四个多管样品沉积物平均粒径和TOC含量垂直分布图

    Figure 4. 

    图 5  沉积物中金属元素总量垂向分布特征

    Figure 5. 

    图 6  研究区沉积物痕量金属各形态分布特征

    Figure 6. 

    图 7  研究区沉积物与河流悬浮颗粒物中痕量金属平均含量对比

    Figure 7. 

    图 8  可还原态金属含量与铁锰氧化物含量之间的相关性

    Figure 8. 

    图 9  拉普捷夫海沉积物中痕量金属陆架–陆坡富集模式图

    Figure 9. 

    表 1  沉积物取样站位信息

    Table 1.  Information of sediment sampling stations

    站位纬度经度水深/m长度/cm
    陆坡LV83-878°26.289′N131°09.054′E245037
    陆架LV83-1477°23.152′N133°37.022′E5020
    LV83-1676°15.196′N132°11.108′E4032
    LV83-2872°56.192′N131°37.493′E2330
    下载: 导出CSV

    表 2  沉积物粒度、金属元素总量和有机碳含量统计分析

    Table 2.  Sediment grain size, bulk content of metals, and TOC

    AlFeMnMoUVCuCoNi粉砂黏土TOC
    LV83-8最小值7.74.32.73.721722424.242.60.010.520.160.57
    最大值8.85.915.732.62.726433.93260.90.110.800.471.27
    平均值8.35.44.38.92.423430.82850.30.030.650.320.83
    标准差0.30.52.97.40.225.82.12.54.20.020.080.080.16
    LV83-14最小值7.84.70.91.02.117619.619.737.600.570.190.84
    最大值8.95.05.3123.019222.125.645.30.060.780.421.21
    平均值8.04.91.83.42.518421.221.640.20.040.610.361.03
    标准差0.10.11.53.10.34.90.61.62.30.020.060.050.10
    LV83-16最小值7.74.40.50.72.115418.616.931.700.550.291.11
    最大值8.15.12.79.72.818522.323.938.70.040.670.451.41
    平均值7.94.90.73.12.417521.019.5360.010.600.391.28
    标准差0.10.20.52.40.27.10.81.31.60.010.030.040.07
    LV83-28最小值7.44.60.71.12.314624.219.537.600.580.241.75
    最大值8.45.43.712.32.715626.322.249.60.080.680.412.11
    平均值8.15.01.22.22.515125.420.639.50.010.610.381.90
    标准差0.20.20.62.30.12.90.60.62.10.010.020.030.08
      注:沉积物粒度、总有机碳及Al、Fe的单位为%;Mn的单位为mg/g;Mo、U、V、Cu、Co、Ni的单位为μg/g。
    下载: 导出CSV

    表 3  研究区沉积物中主微量元素相关系数

    Table 3.  Correlation coefficients of main and trace elements of the sediments

    AlFeMnMoUVCuCoNiTOCMZ
    Al1
    Fe0.821
    Mn0.520.581
    Mo0.410.430.771
    U0.320.240.100.131
    V0.500.670.580.520.051
    Cu0.660.770.690.43−0.040.631
    Co0.630.750.710.610.120.850.821
    Ni0.650.740.770.680.150.790.860.941
    TOC−0.20−0.24−0.42−0.440.04−0.81−0.21−0.60−0.521
    MZ−0.010.14−0.14−0.270.15−0.19−0.02−0.17−0.220.381
    下载: 导出CSV
  • [1]

    李力, 王保栋. 痕量金属在海水中的存在形态和分析方法的研究进展[J]. 海洋科学, 2013, 37(1):119-125

    LI Li, WANG Baodong. Current researches on trace metal speciation in seawater [J]. Marine Sciences, 2013, 37(1): 119-125.

    [2]

    Morel F M M, Price N M. The biogeochemical cycles of trace metals in the oceans [J]. Science, 2003, 300(5621): 944-947. doi: 10.1126/science.1083545

    [3]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–Uranium Covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    [4]

    常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    [5]

    解兴伟, 袁华茂, 宋金明, 等. 东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J]. 海洋学报, 2020, 42(2):30-43

    XIE Xingwei, YUAN Huamao, SONG Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea [J]. Acta Oceanologica Sinica, 2020, 42(2): 30-43.

    [6]

    Butler A. Acquisition and utilization of transition metal ions by marine organisms [J]. Science, 1998, 281(5374): 207-210. doi: 10.1126/science.281.5374.207

    [7]

    Moffett J W, Brand L E, Croot P L, et al. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs [J]. Limnology and Oceanography, 1997, 42(5): 789-799. doi: 10.4319/lo.1997.42.5.0789

    [8]

    Jakobsson M. Hypsometry and volume of the Arctic Ocean and its constituent seas [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(5): 1-18.

    [9]

    Bauch H A, Kassens H. Arctic Siberian shelf environments: an introduction [J]. Global and Planetary Change, 2005, 48(1-3): 1-8. doi: 10.1016/j.gloplacha.2004.12.003

    [10]

    Kuzyk Z Z A, Gobeil C, Goñi M A, et al. Early diagenesis and trace element accumulation in North American Arctic margin sediments [J]. Geochimica et Cosmochimica Acta, 2017, 203: 175-200. doi: 10.1016/j.gca.2016.12.015

    [11]

    Li L, Wang X L, Ren Y J, et al. Enrichment of trace metals (V, Cu, Co, Ni, and Mo) in arctic sediments: from Siberian arctic Shelves to the Basin [J]. Journal of Geophysical Research:Oceans, 2021, 126(4): 1-14.

    [12]

    Whitmore L M, Morton P L, Twining B S, et al. Vanadium cycling in the Western Arctic Ocean is influenced by shelf-basin connectivity [J]. Marine Chemistry, 2019, 216: 103701. doi: 10.1016/j.marchem.2019.103701

    [13]

    Charette M A, Kipp L E, Jensen L T, et al. The transpolar drift as a source of riverine and shelf‐derived trace elements to the central Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 2020, 125(5): e2019JC015920.

    [14]

    Wheeler P A, Watkins J M, Hansing R L. Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1997, 44(8): 15271-1575,1577-1592.

    [15]

    Klunder M B, Bauch D, Laan P, et al. Dissolved iron in the Arctic shelf seas and surface waters of the central Arctic Ocean: impact of Arctic river water and ice-melt [J]. Journal of Geophysical Research:Oceans, 2012, 117(C1): C01027.

    [16]

    Kipp L E, Charette M A, Moore W S, et al. Increased fluxes of shelf-derived materials to the central Arctic Ocean [J]. Science Advances, 2018, 4(1): eaao1302. doi: 10.1126/sciadv.aao1302

    [17]

    Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. doi: 10.1039/a807854h

    [18]

    Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.

    [19]

    Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. Oxford: Elsevier, 2014: 1-51.

    [20]

    董春肖, 李铁, 刘春颖, 等. 长江口及其邻近海域表层沉积物中部分金属元素赋存形态研究[J]. 海洋湖沼通报, 2017(5):114-124

    DONG Chunxiao, LI Tie, LIU Chunying, et al. A study on the geochemical forms of metal elements in the surface sediments of Yangtze estuary and its Adjacent Sea Areas [J]. Transactions of Oceanology and Limnology, 2017(5): 114-124.

    [21]

    王小静, 李力, 高晶晶, 等. 渤海西南部近岸功能区表层沉积物重金属形态分析及环境评价[J]. 海洋与湖沼, 2015, 46(3):517-525 doi: 10.11693/hyhz20140900258

    WANG Xiaojing, LI Li, GAO Jingjing, et al. Geochemical speciation and environmental assessment of heavy metals in surface sediments infunctional zones of southwest Bohai Sea, China [J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 517-525. doi: 10.11693/hyhz20140900258

    [22]

    Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition [J]. Earth and Planetary Science Letters, 1996, 145(1-4): 65-78. doi: 10.1016/S0012-821X(96)00204-X

    [23]

    Koschinsky A. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2001, 48(17-18): 3757-3777. doi: 10.1016/S0967-0645(01)00066-2

    [24]

    Canfield D E, Thamdrup B, Hansen J W, et al. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction [J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867-3883. doi: 10.1016/0016-7037(93)90340-3

    [25]

    Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record [J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T

    [26]

    Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments [J]. Geochimica et Cosmochimica Acta, 1999, 63(11-12): 1735-1750. doi: 10.1016/S0016-7037(99)00126-X

    [27]

    Sattarova V, Aksentov K, Astakhov A, et al. Trace metals in surface sediments from the Laptev and East Siberian Seas: Levels, enrichment, contamination assessment, and sources [J]. Marine Pollution Bulletin, 2021, 173: 112997. doi: 10.1016/j.marpolbul.2021.112997

    [28]

    Gordeev V V. Fluvial sediment flux to the Arctic Ocean [J]. Geomorphology, 2006, 80(1-2): 94-104. doi: 10.1016/j.geomorph.2005.09.008

    [29]

    Rachold V. Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean[M]//Kassens H, Bauch H A, Dmitrenko I A, et al Land-Ocean Systems in the Siberian Arctic-Dynamics and History. Berlin: Springer Verlag, 1999: 199-222.

    [30]

    程俊, 黄怡, 王淑红, 等. 南海典型断面表层沉积物中氧化还原敏感元素的分布特征及其控制因素[J]. 海洋地质与第四纪地质, 2019, 39(2):90-103

    CHENG Jun, HUANG Yi, WANG Shuhong, et al. Distribution pattern and controlling factors of redox sensitive elements in the surface sediments from four typical transects in the South China Sea [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 90-103.

    [31]

    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568

    [32]

    Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation [J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77. doi: 10.1016/0016-7037(89)90273-1

    [33]

    Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis [J]. Chemical Geology, 1991, 91(2): 83-97. doi: 10.1016/0009-2541(91)90083-4

    [34]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [35]

    März C, Poulton S W, Brumsack H J, et al. Climate-controlled variability of iron deposition in the Central Arctic Ocean (southern Mendeleev Ridge) over the last 130, 000 years [J]. Chemical Geology, 2012, 330-331: 116-126. doi: 10.1016/j.chemgeo.2012.08.015

    [36]

    李文君, 卢彦宏, 高峰, 等. 东海泥质区表层沉积物中锰、铁和铝的赋存形态及影响因素研究[J]. 中国海洋大学学报, 2012, 42(S1):165-171

    LI Wenjun, LU Yanhong, GAO Feng, et al. Study of the geochemical forms of manganese, iron and aluminum in surface sediments of mud area from the east China Sea continental shelf and their influence factors [J]. Journal of Ocean University of China, 2012, 42(S1): 165-171.

    [37]

    Kondo Y, Obata H, Hioki N, et al. Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012 [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 116: 236-252. doi: 10.1016/j.dsr.2016.08.010

    [38]

    Scholz F, Hensen C, Noffke A, et al. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area-response to ENSO-related oxygen fluctuations in the water column [J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7257-7276. doi: 10.1016/j.gca.2011.08.007

    [39]

    Klunder M B, Laan P, Middag R, et al. Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal [J]. Journal of Geophysical Research:Oceans, 2012, 117(C4): C04014.

    [40]

    Van de Velde S J, Hylén A, Kononets M, et al. Elevated sedimentary removal of Fe, Mn, and trace elements following a transient oxygenation event in the Eastern Gotland Basin, central Baltic Sea [J]. Geochimica et Cosmochimica Acta, 2020, 271: 16-32. doi: 10.1016/j.gca.2019.11.034

  • 加载中

(9)

(3)

计量
  • 文章访问数:  2083
  • PDF下载数:  49
  • 施引文献:  0
出版历程
收稿日期:  2022-01-27
修回日期:  2022-03-29
录用日期:  2022-03-29
刊出日期:  2022-08-28

目录