北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁

王雨楠, 周保春, 王汝建, 肖文申. 北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁[J]. 海洋地质与第四纪地质, 2022, 42(4): 39-49. doi: 10.16562/j.cnki.0256-1492.2022021601
引用本文: 王雨楠, 周保春, 王汝建, 肖文申. 北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁[J]. 海洋地质与第四纪地质, 2022, 42(4): 39-49. doi: 10.16562/j.cnki.0256-1492.2022021601
WANG Yunan, ZHOU Baochun, WANG Rujian, XIAO Wenshen. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 39-49. doi: 10.16562/j.cnki.0256-1492.2022021601
Citation: WANG Yunan, ZHOU Baochun, WANG Rujian, XIAO Wenshen. Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 39-49. doi: 10.16562/j.cnki.0256-1492.2022021601

北冰洋中部阿尔法脊晚第四纪介形虫化石群与古海洋环境变迁

  • 基金项目: 国家自然科学基金面上项目“中更新世以来西北冰洋深海氧化-还原环境的变化及其对碳循环的指示”(42176223);上海市自然科学基金“北冰洋全新世—晚第四纪介形类动物群及古气候复原”(14ZR1427600);中国科学院战略先导基金“关键地史时期生物与环境演变过程及其机制”(XDB26000000)
详细信息
    作者简介: 王雨楠(1984—),女,助理研究员,主要从事早寒武纪节肢动物及第四纪介形虫研究,E-mail:wangyn@sstm.org.cn
    通讯作者: 周保春(1963—),男,研究员,主要从事新生代介形虫分类、进化及古海洋学研究,E-mail:zhoubch@sstm.org.cn 王汝建(1959—),男,教授,主要从事海洋地质学、古海洋学与古气候学研究,E-mail:rjwang@tongji.edu.cn
  • 中图分类号: P736.2

Late Quaternary paleoceanographic history of the Alpha Ridge, central Arctic Ocean based on ostracode records

More Information
  • 基于北冰洋中部阿尔法脊ARC3-B84A岩芯(水深2280 m)中的介形虫化石群记录,重建了MIS 13期以来该海域的古海洋环境变迁。从该岩芯获取的介形虫壳瓣逾7000枚,包含8属11种。由介形虫丰度所代表的底栖生物古生产力在MIS 13–10期很低,进入MIS 9期之后显著升高。海冰指示种Acetabulastoma arcticum显示常年海冰很可能是在MIS 9期之后出现的。在所有属种中,北冰洋中层水(AIW)指示种Polycope spp.和北冰洋深层水(AODW)指示种Cytheropteron sedovi的个体数量最多,二者在岩芯中的百分含量呈负相关,它们与其他属种(Microcythere medistriatum, Pseudocythere caudata, Pedicythere spp., Cytheropteron scoresbyi, Cytheropteron higashikawai, Henryhowella asperrima)一起,揭示该岩芯站位经历了如下的水团变迁历史:最初处于AODW上部(MIS 13–12),之后被上涌的AODW下部所取代(MIS 11–10);尔后,上方的AIW大幅下潜,取代了AODW(MIS 9期–MIS 5早期);在MIS 5中–晚期,AODW下部快速上涌,取代了AIW;最终在MIS 4之后,水团定格在AODW上部。

  • 加载中
  • 图 1  西北冰洋阿尔法脊B84A岩芯平面位置(a)以及在海洋水团中的位置(b)

    Figure 1. 

    图 2  阿尔法脊B84A岩芯中介形虫标本扫描电子显微镜照片

    Figure 2. 

    图 3 

    图 3  B84A岩芯中介形虫主要属种在现代北冰洋的分布

    Figure 3. 

    图 4  B84A岩芯中有孔虫、介形虫丰度及介形虫主要属种百分含量变化

    Figure 4. 

    表 1  本研究使用的岩芯及其信息汇总

    Table 1.  Information for all the cores used in this study

    岩芯海域纬度(N)经度(W)水深/m来源
    ARC3-B84A阿尔法脊84°26.5′143°34.8′2280本文
    ARC3-P31楚科奇海台77°59.9′168°00.7′435文献[17]
    ARC6-R14楚科奇海台78°38.3′160°26.8′741文献[17]
    ARC7-P12楚科奇海台78°17.2′162°41.3′580文献[17]
    下载: 导出CSV

    表 2  B84A岩芯中的介形虫优势种和常见种在现代北冰洋各水团中的百分含量

    Table 2.  Relative frequencies (%) of ostracode taxa, which are abundant or common in core B84A, in the Arctic water masses

    种名0~50 m
    (PSW)
    50~200 m
    (盐跃层)
    200~1000 m
    (AW)
    1000~2 000 m
    (AIW)
    >2 000 m
    (AODW)
    Polycope spp.0.381.478.4432.676.82
    Microcythere medistriatum000.202.071.92
    Pseudocythere caudata0.030.351.392.781.67
    Pedicythere spp.00.050.211.120.64
    Henryhowella asperrima0001.422.90
    Cytheropteron scoresbyi00.393.648.0510.47
    Cytheropteron sedovi00.021.119.7219.16
    Cytheropteron higashikawai00.422.312.975.80
    下载: 导出CSV

    表 3  B84A岩芯中介形虫主要属种指示的水团及其在各时代的百分含量

    Table 3.  Correspondence of ostracode taxa with water masses, and their relative frequencies (%) in different times as recorded in core B84A

    种名对应的水团MIS 13–12MIS 11–10MIS 9–6MIS 5MIS 4–1
    Polycope spp.AIW44.97.766.434.142.8
    Cytheropteron sedoviAODW下部40.671.715.940.111.4
    Microcythere medistriatumAIW&AODW001.31.14.0
    Pseudocythere caudataAIW002.60.90.9
    Pedicythere spp.AIW00.50.51.70.9
    Henryhowella asperrimaAODW上部000024.0
    Cytheropteron scoresbyiAODW&AIW4.312.84.45.43.1
    Cytheropteron higashikawaiAODW下部01.40.71.84.4
    下载: 导出CSV
  • [1]

    Rudels B. Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009 [J]. Progress in Oceanography, 2015, 132: 22-67. doi: 10.1016/j.pocean.2013.11.006

    [2]

    Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation [J]. Journal of Geophysical Research:Oceans, 1989, 94(C10): 14485-14498. doi: 10.1029/JC094iC10p14485

    [3]

    Anderson L G, Björk G, Holby O, et al. Water masses and circulation in the Eurasian Basin: results from the Oden 91 expedition [J]. Journal of Geophysical Research, 1994, 99(C2): 3273-3283. doi: 10.1029/93JC02977

    [4]

    Jones E P. Circulation in the Arctic Ocean [J]. Polar Research, 2001, 20(2): 139-146. doi: 10.1111/j.1751-8369.2001.tb00049.x

    [5]

    Rudels B, Jones E P, Schauer U, et al. Atlantic sources of the Arctic Ocean surface and halocline waters [J]. Polar Research:Oceans, 2004, 23(2): 181-208. doi: 10.1111/j.1751-8369.2004.tb00007.x

    [6]

    Rudels B, Anderson L G, Jones E P. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 1996, 101(C4): 8807-8821. doi: 10.1029/96JC00143

    [7]

    Beszczynska-Möller A, Woodgate R A, Lee C M, et al. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean [J]. Oceanography, 2011, 24(3): 82-99. doi: 10.5670/oceanog.2011.59

    [8]

    Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean [J]. Journal of Geophysical Research:Oceans, 1998, 103(C5): 10419-10435. doi: 10.1029/98JC00580

    [9]

    Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic Ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 1098. doi: 10.1029/2001GB001849

    [10]

    Aagaard K, Coachman L K, Carmack E. On the halocline of the Arctic Ocean [J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1981, 28(6): 529-545. doi: 10.1016/0198-0149(81)90115-1

    [11]

    Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre [J]. Nature Geoscience, 2012, 5(3): 194-197. doi: 10.1038/ngeo1379

    [12]

    Proshutinsky A, Krishfield R, Toole J M, et al. Analysis of the Beaufort Gyre freshwater content in 2003–2018 [J]. Journal of Geophysical Research Oceans, 2019, 124(12): 9658-9689. doi: 10.1029/2019JC015281

    [13]

    Comiso J C. Large-scale characteristics and variability of the global sea ice cover [M]. //Thomas D N, Dieckmann G S. Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology. Chapter 4. Oxford: Wiley-Blackwell, 2003: 112–141.

    [14]

    Haley B A, Frank M, Spielhagen R F, et al. Influence of brine formation on Arctic Ocean circulation over the past 15 million years [J]. Nature Geoscience, 2008, 1: 68-72. doi: 10.1038/ngeo.2007.5

    [15]

    Cronin T M, Dwyer G S, Farmer J, et al. Deep Arctic Ocean warming during the last glacial cycle [J]. Nature Geoscience, 2012, 5: 631-634. doi: 10.1038/ngeo1557

    [16]

    Gemery L, Cronin T M, Briggs Jr W M, et al. An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications [J]. Hydrobiologia, 2015, https://doi.org/10.1007/s10750-015-2587-4.

    [17]

    Zhou B C, Wang R J, Xiao W S, et al. Late Quaternary paleoceanographic history based on ostracode records from the Chukchi Plateau, western Arctic Ocean [J]. Marine Micropaleontology, 2021, 165: 101987. doi: 10.1016/j.marmicro.2021.101987

    [18]

    Poirier R K, Cronin T M, Briggs Jr W M, et al. Central Arctic paleoceanography for the last 50 kyr based on ostracode faunal assemblages [J]. Marine Micropaleontology, 2012, 88–89: 65–76.

    [19]

    Gemery L, Cronin T M, Poirier R K, et al. Central Arctic Ocean paleoceanography from ~50 ka to present, on the basis of ostracode faunal assemblages from the SWERUS 2014 expedition [J]. Climate of the Past, 2017, 13(11): 1473-1489. doi: 10.5194/cp-13-1473-2017

    [20]

    周保春, 王汝建, 梅静. 末次冰消期后大西洋水进入楚科奇海台: 来自介形虫化石群的证据[J]. 海洋地质与第四纪地质, 2015, 35(3):73-82

    ZHOU Baochun, WANG Rujian, MEI Jing. The spreading of Atlantic Water onto Chukchi Plateau after Last Deglaciation: evidence from fossil ostracods [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 73-82.

    [21]

    张海生. 中国第三次北极科学考察报告[M]. 北京: 海洋出版社, 2009.

    ZHANG Haisheng. The Report of 2008 Chinese Arctic Research Expedition [M]. Beijing: China Ocean Press, 2009.

    [22]

    Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979–2006 [J]. Journal of Geophysical Research, 2008, 113: C07003. doi: 10.1029/2007JC004558

    [23]

    Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the east Siberian continental margin [J]. Nature Geoscience, 2013, 6: 842-846. doi: 10.1038/ngeo1904

    [24]

    Jakobsson M, Nilsson J, Anderson L, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation [J]. Nature Communications, 2016, 7: 10365. doi: 10.1038/ncomms10365

    [25]

    Yasuhara M, Stepanova A, Okahashi H, et al. Taxonomic revision of deep-sea Ostracoda from the Arctic Ocean [J]. Micropaleontology, 2014, 60(5): 399-444.

    [26]

    Schlitzer R. Ocean Data View [EB/OL]. (2022-03-04). http://odv.awi.de.

    [27]

    Wang R J, Polyak L, Xiao W S, et al. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales [J]. Quaternary Science Reviews, 2018, 181: 93-108. doi: 10.1016/j.quascirev.2017.12.006

    [28]

    Lisiecki E, Raymo E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records [J]. Paleoceanography, 2005, 20: PA1003. doi: 10.1029/2004PA001071

    [29]

    Cronin T M, Holtz Jr T R, Stein R, et al. Late Quaternary paleoceanography of the Eurasian Basin, Arctic Ocean [J]. Paleoceanography, 1995, 10(2): 259-281. doi: 10.1029/94PA03149

    [30]

    Cronin T M, Polyak L, Reed D, et al. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes [J]. Quaternary Science Reviews, 2013, 79: 157-167. doi: 10.1016/j.quascirev.2012.12.010

    [31]

    Joy J A, Clark D L. The distribution, ecology and systematics of the benthic Ostracoda of the central Arctic Ocean [J]. Micropaleontology, 1977, 23(2): 129-154. doi: 10.2307/1485329

    [32]

    Jones R Ll, Whatley R C, Cronin T M, et al. Reconstructing late Quaternary deep-water masses in the Eastern Arctic Ocean using benthonic Ostracoda [J]. Marine Micropaleontology, 1999, 37: 251-272. doi: 10.1016/S0377-8398(99)00022-5

    [33]

    Sars G O. Oversigt af Norges marine Ostracoder [J]. Forhandlinger I Videnskabs-Selskabet I Christiania, 1866, 1865(1): 1-130.

    [34]

    Cronin T M, DeNinno L H, Polyak L, et al. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean [J]. Marine Micropaleontology, 2014, 111: 118-133. doi: 10.1016/j.marmicro.2014.05.001

    [35]

    Cronin T M, Gemery L, Briggs Jr W M, et al. Quaternary sea-ice history in the Arctic Ocean based on a new ostracode sea-ice proxy [J]. Quaternary Science Reviews, 2010, 29(25-26): 3415-3429. doi: 10.1016/j.quascirev.2010.05.024

    [36]

    Polyak L, Curry W B, Darby D A, et al. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 203(1-2): 73-93. doi: 10.1016/S0031-0182(03)00661-8

    [37]

    Spielhagen R F, Baumann K H, Erlenkeuser H, et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history [J]. Quaternary Science Reviews, 2004, 23: 1455-1483. doi: 10.1016/j.quascirev.2003.12.015

    [38]

    Adler R E, Polyak L, Crawford K A, et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge [J]. Global and Planetary Change, 2009, 68: 18-29. doi: 10.1016/j.gloplacha.2009.03.026

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1622
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2022-02-16
修回日期:  2022-03-17
录用日期:  2022-03-17
刊出日期:  2022-08-28

目录