基于灰色理论指导的储层构型半定量表征及优质储层预测—以西湖凹陷A构造花港组H3砂层组为例

姜雪, 熊志武. 基于灰色理论指导的储层构型半定量表征及优质储层预测—以西湖凹陷A构造花港组H3砂层组为例[J]. 海洋地质与第四纪地质, 2022, 42(6): 162-172. doi: 10.16562/j.cnki.0256-1492.2022022301
引用本文: 姜雪, 熊志武. 基于灰色理论指导的储层构型半定量表征及优质储层预测—以西湖凹陷A构造花港组H3砂层组为例[J]. 海洋地质与第四纪地质, 2022, 42(6): 162-172. doi: 10.16562/j.cnki.0256-1492.2022022301
JIANG Xue, XIONG Zhiwu. Semi-quantitative study on reservoir configuration in grey theory—A case study of H3 sand unit of Huagang Formation in A Structure, Xihu Sag[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 162-172. doi: 10.16562/j.cnki.0256-1492.2022022301
Citation: JIANG Xue, XIONG Zhiwu. Semi-quantitative study on reservoir configuration in grey theory—A case study of H3 sand unit of Huagang Formation in A Structure, Xihu Sag[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 162-172. doi: 10.16562/j.cnki.0256-1492.2022022301

基于灰色理论指导的储层构型半定量表征及优质储层预测—以西湖凹陷A构造花港组H3砂层组为例

  • 基金项目: “十三五”国家重大专项“东海深层大型气田勘探评价技术”(2016ZX05027-002),“西湖凹陷西部地区勘探开发关键技术研究”(CNOOC-KJ135ZDXM39SH01)
详细信息
    作者简介: 姜雪(1988—),女,硕士,从事沉积储层研究,E-mail:jiangxue3@cnooc.com.cn
  • 中图分类号: P744

Semi-quantitative study on reservoir configuration in grey theory—A case study of H3 sand unit of Huagang Formation in A Structure, Xihu Sag

  • A构造位于西湖凹陷中北部,花港组H3砂层组为主力目的层,其储层横向分布相对稳定,但储层砂体厚度大,非均质性强,骨架河道的雕刻不清制约了优质储层的预测。利用灰色理论,定量计算西湖凹陷A构造花港组隔夹层综合评价指标IRE,识别厚层砂岩中的隔夹层类型,划分河道期次,识别骨架河道。此外,计算河道宽厚比和砂地比,半定量表征河道连通性及展布特征,预测优质储层发育区。结果表明,西湖凹陷A构造花港组发育两种类型隔夹层:落淤层夹层和泥岩层隔层,其中落淤层IRE值为24~45,泥岩层IRE值为51~110,在H3砂层组识别出3大套共10期单河道砂体。工区单河道宽厚比为38.87,折算出各期河道展布范围为1.1~2.3 km,河道砂体几乎都呈叠拼式展布。在地震复合微相指导下,对花港组早期河道进行识别和追踪,结合沉积微相、粗粒相带及成岩相分布特征,认为A构造南部有利储层更为发育。

  • 加载中
  • 图 1  西湖凹陷构造带位置及钻探井位

    Figure 1. 

    图  

    图 2  IRE与泥质含量关系

    Figure 2. 

    图 3  A1井隔夹层识别与划分

    Figure 3. 

    图 4  A构造H3储层物性分布连井剖面

    Figure 4. 

    图 5  A5井与A1井砂体精细对比

    Figure 5. 

    图 6  A2井—A1井—A4井砂体精细对比

    Figure 6. 

    图 7  A构造H3古地貌及地震复合微相河道识别

    Figure 7. 

    图 8  H3沉积微相及粗粒相带分布图

    Figure 8. 

    图 9  A构造花港组溶蚀面孔率与物性关系

    Figure 9. 

    图 10  A构造H3强溶蚀区分布及有利区带叠合图

    Figure 10. 

    表 2  IRE与储层类型定量关系

    Table 2.  Quantitative relationship between IRE and reservoir type

    隔夹层类型IRE岩相组合水动力强弱渗透率/10−3 μm2储层类型
    落淤层24~37块状含砾砂岩–中粗砂岩–块状中砂岩高能水道0.3~79
    (均值 21)
    I类
    落淤层35~45少量砂质砾岩–少量块状中粗砂岩–大量块状细砂+平行细砂低能水道0.5~8
    (均值1.2)
    II1类
    泥岩层51~110平行中细砂岩–粉细砂低能水道0~1
    (均值0.4)
    II2类
    下载: 导出CSV

    表 3  A构造H3 IRE值与隔夹层类型划分

    Table 3.  The IRE value of A Structure and the corresponding interlayer type

    砂层期次12345678910
    A1井IRE36~4241~4554~7030~3926~3424~2927~3031~4234~4351~72
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层落淤层泥岩层
    A2井IRE37~4630~3344~7024~2927~3041~6031~4234~5341~5243~104
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层泥岩层落淤层泥岩层泥岩层泥岩层
    A4井IRE43~4947~5342~8242~4731~4245~7741~7653~67
    隔夹层类型泥岩层泥岩层泥岩层落淤层落淤层泥岩层泥岩层泥岩层
    A5井IRE43~5036~5537~4538~4739~4343~5042~7152~6047~5643~92
    隔夹层类型落淤层落淤层泥岩层落淤层落淤层落淤层泥岩层落淤层泥岩层泥岩层
    下载: 导出CSV

    表 4  强溶蚀区划分依据

    Table 4.  Identification criterion for the division of diagenetic facies in strong dissolution area

    成岩储集相A相B相C相D相
    岩石类型中、粗砂岩
    含砾砂岩
    中–细砂岩
    含砾砂岩
    细砂岩粉–细砂岩、泥砾砂岩、钙质砂岩
    沉积微相辫状河道主体河道侧缘
    泥质杂基/%0~42~51~71~13
    孔隙度/%6~115~103.5~102.2~9
    渗透率/10−3 μm2>10.5~10.2~0.5<0.2
    视压实率/%85~9980~9440~9540~93
    视胶结率/%<61~8.51~171~68
    视溶蚀率/%4~202.3~100.5~90~8
    DTS/(μs/ft)95~10590~115
    GR/API≤55>55
    RT/(Ω·m)≥45<45
    ZDEN/(g/cm)≤2.52>2.52
    储集性能较好致密
    下载: 导出CSV
  • [1]

    于兴河, 马兴详, 穆龙新, 等. 辫状河储层地质模式及层次界面分析[M]. 北京: 石油工业出版社, 2004.

    YU Xinghe, MA Xingxiang, MU Longxin, et al. Reservoir Geology Model and Analysis of Hierarchy Surface[M]. Beijing: Petroleum Industry Press, 2004.

    [2]

    Lynds R, Hajek E. Conceptual model for predicting mudstone dimensions in sandy braided-river reservoirs [J]. AAPG Bulletin, 2006, 90(8): 1273-1288. doi: 10.1306/03080605051

    [3]

    印森林, 吴胜和, 冯文杰, 等. 冲积扇储集层内部隔夹层样式: 以克拉玛依油田一中区克下组为例[J]. 石油勘探与开发, 2013, 40(6):757-763 doi: 10.11698/PED.2013.06.18

    YIN Senlin, WU Shenghe, FENG Wenjie, et al. Patterns of inter-layers in the alluvial fan reservoirs: A case study on Triassic Lower Karamay Formation, Yizhong Area, Karamay Oilfield, NW China [J]. Petroleum Exploration and Development, 2013, 40(6): 757-763. doi: 10.11698/PED.2013.06.18

    [4]

    渠芳, 陈清华, 连承波. 河流相储层构型及其对油水分布的控制[J]. 中国石油大学学报:自然科学版, 2008, 32(3):14-18

    QU Fang, CHEN Qinghua, LIAN Chengbo. Fluvial facies reservoir architecture and its control over the distribution of oil and water [J]. Journal of China University of Petroleum, 2008, 32(3): 14-18.

    [5]

    Thorne C R, Russell A P G, Alam M K. Planform pattern and channel evolution of the Brahmaputra river, Bangladesh[M]//Best J L, Bristow C S. Braided Rivers. London: Geological Society of London, 1993: 257-276.

    [6]

    陈清华, 曾明, 章凤奇, 等. 河流相储层单一河道的识别及其对油田开发的意义[J]. 油气地质与采收率, 2004, 11(3):13-15 doi: 10.3969/j.issn.1009-9603.2004.03.005

    CHEN Qinghua, ZENG Ming, ZHANG Fengqi, et al. Identification of single channel in fluvial reservoir and its significance to the oilfield development [J]. Petroleum Geology and Recovery Efficiency, 2004, 11(3): 13-15. doi: 10.3969/j.issn.1009-9603.2004.03.005

    [7]

    白振强. 辫状河砂体三维构型地质建模研究[J]. 西南石油大学学报:自然科学版, 2010, 32(6):21-24

    BAI Zhenqiang. Study on the 3D architecture geological modeling of braided fluvial sandbody [J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010, 32(6): 21-24.

    [8]

    蒋一鸣, 何新建, 张绍亮. 东海陆架盆地“反转改造”构造迁移演化特征: 以西湖凹陷边缘构造为例[J]. 长江大学学报:自科版, 2016, 13(26):1-7

    JIANG Yiming, HE Xinjian, ZHANG Shaoliang. The characteristics of “Inverse-transform” tectonic migration evolution of the East China Sea Shelf basin: by taking the marginal structure of Xihu sag for example [J]. Journal of Yangtze University:Natural Science Edition, 2016, 13(26): 1-7.

    [9]

    郭真, 刘池洋, 田建锋. 东海陆架盆地龙井运动构造影响及其发育背景[J]. 西北大学学报:自然科学版, 2015, 45(5):801-810

    GUO Zhen, LIU Chiyang, TIAN Jianfeng. Longjing movement structural effect and developmental background in East China Sea basin [J]. Journal of Northwest University:Natural Science Edition, 2015, 45(5): 801-810.

    [10]

    李顺利, 许磊, 于兴河, 等. 东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征[J]. 古地理学报, 2018, 20(6):1023-1032 doi: 10.7605/gdlxb.2018.06.075

    LI Shunli, XU Lei, YU Xinghe, et al. Marine transgressions and characteristics of tide-dominated sedimentary systems in the Oligocene, Xihu sag, East China Sea Shelf Basin [J]. Journal of Palaeogeography, 2018, 20(6): 1023-1032. doi: 10.7605/gdlxb.2018.06.075

    [11]

    张建培, 余逸凡, 张田, 等. 东海西湖凹陷深盆气勘探前景探讨[J]. 中国海上油气, 2013, 25(2):24-29, 35

    ZHANG Jianpei, YU Yifan, ZHANG Tian, et al. A discussion on the exploration potential of deep basin gas in Xihu sag, East China Sea [J]. China Offshore Oil and Gas, 2013, 25(2): 24-29, 35.

    [12]

    王果寿, 周卓明, 肖朝辉, 等. 西湖凹陷春晓区带下第三系平湖组、花港组沉积特征[J]. 石油与天然气地质, 2002, 23(3):257-261, 265 doi: 10.3321/j.issn:0253-9985.2002.03.012

    WANG Guoshou, ZHOU Zhuoming, XIAO Chaohui, et al. Sedimentary characteristics of Eugene Pinghu formation and Huagang formation in Chunxiao Zone of Xihu lake depression [J]. Oil & Gas Geology, 2002, 23(3): 257-261, 265. doi: 10.3321/j.issn:0253-9985.2002.03.012

    [13]

    张银国. 东海西湖凹陷花港组油气地质条件与油气分布规律[J]. 石油实验地质, 2010, 32(3):223-226,231 doi: 10.3969/j.issn.1001-6112.2010.03.004

    ZHANG Yinguo. Petroleum geology and hydrocarbon distribution pattern of Huagang Formation in the Xihu sag of the East China Sea [J]. Petroleum Geology & Experiment, 2010, 32(3): 223-226,231. doi: 10.3969/j.issn.1001-6112.2010.03.004

    [14]

    陈哲, 张昌民, 侯国伟, 等. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制[J]. 石油与天然气地质, 2020, 41(4):824-837 doi: 10.11743/ogg20200415

    CHEN Zhe, ZHANG Changmin, HOU Guowei, et al. Fault distribution patterns and their control on sand bodies in Pinghu Formation of Xihu Sag in East China Sea Shelf Basin [J]. Oil & Gas Geology, 2020, 41(4): 824-837. doi: 10.11743/ogg20200415

    [15]

    苏奥, 贺聪, 陈红汉, 等. 构造反转对西湖凹陷中部油气成藏的控制作用[J]. 特种油气藏, 2016, 23(3):75-78,147 doi: 10.3969/j.issn.1006-6535.2016.03.017

    SU Ao, HE Cong, CHEN Honghan, et al. Effect of tectonic inversion on hydrocarbon accumulation in the central area of Xihu depression [J]. Special Oil & Gas Reservoirs, 2016, 23(3): 75-78,147. doi: 10.3969/j.issn.1006-6535.2016.03.017

    [16]

    梁若冰, 李玉珍, 李纯洁, 等. 平湖油气田地质特征与勘探方向[J]. 海洋石油, 2008, 28(2):7-13, 57 doi: 10.3969/j.issn.1008-2336.2008.02.002

    LIANG Ruobing, LI Yuzhen, LI Chunjie, et al. Geological characteristics and exploration targets of Pinghu oilfield [J]. Offshore Oil, 2008, 28(2): 7-13, 57. doi: 10.3969/j.issn.1008-2336.2008.02.002

    [17]

    钟志洪, 张建培, 孙珍, 等. 西湖凹陷黄岩区地质演化及断层对油气运聚的影响[J]. 海洋石油, 2003, 23(S1):30-35

    ZHONG Zhihong, ZHANG Jianpei, SUN Zhen, et al. Geological evolution of Huangyan area in Xihu sag and the influence of oil and gas migration in fault zone [J]. Offshore Oil, 2003, 23(S1): 30-35.

    [18]

    秦兰芝, 刘金水, 李帅, 等. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义[J]. 石油实验地质, 2017, 39(4):498-504, 526 doi: 10.11781/sysydz201704498

    QIN Lanzhi, LIU Jinshui, LI Shuai, et al. Characteristics of zircon in the Huagang Formation of the central inversion zone of Xihu Sag and its provenance indication [J]. Petroleum Geology & Experiment, 2017, 39(4): 498-504, 526. doi: 10.11781/sysydz201704498

    [19]

    陈波, 李文俊, 丁芳, 等. 基于地震波形结构特征的分流河道砂体储层构型[J]. 石油地质与工程, 2021, 35(6):1-6 doi: 10.3969/j.issn.1673-8217.2021.06.001

    CHEN Bo, LI Wenjun, DING Fang, et al. Reservoir configuration of distributary channel sand body based on the structural features of seismic waveforms [J]. Petroleum Geology and Engineering, 2021, 35(6): 1-6. doi: 10.3969/j.issn.1673-8217.2021.06.001

    [20]

    刘玉娟, 郑彬, 李红英, 等. 渤海A油田大厚层油藏储层构型研究[J]. 石油地质与工程, 2018, 32(6):16-20 doi: 10.3969/j.issn.1673-8217.2018.06.004

    LIU Yujuan, ZHENG Bin, LI Hongying, et al. Study on reservoir configuration of large thick reservoirs in Bohai A Oilfield [J]. Petroleum Geology and Engineering, 2018, 32(6): 16-20. doi: 10.3969/j.issn.1673-8217.2018.06.004

    [21]

    孙天建, 穆龙新, 赵国良. 砂质辫状河储集层隔夹层类型及其表征方法: 以苏丹穆格莱特盆地Hegli油田为例[J]. 石油勘探与开发, 2014, 41(2):112-120

    SUN Tianjian, MU Longxin, ZHAO Guoliang. Classification and characterization of barrier-intercalation in sandy braided river reservoirs: Taking Hegli Oilfield of Muglad Basin in Sudan as an example [J]. Petroleum Exploration and Development, 2014, 41(2): 112-120.

    [22]

    宋子齐, 谭成仟, 曲政. 利用灰色理论精细评价油气储层的方法[J]. 石油学报, 1996, 17(1):25-31 doi: 10.7623/syxb199601004

    SONG Ziqi, TAN Chengqian, QU Zheng. Utilizing exact grey theory to evaluate oil and gas formation [J]. Acta Petrolei Sinica, 1996, 17(1): 25-31. doi: 10.7623/syxb199601004

    [23]

    Bridge J S. Fluvial facies models: Recent developments[M]//Posamentier H W, Walker R G. Facies Models Revisited. Tulsa: Society for Sedimentary Geology, 2006: 83-168.

    [24]

    Bridge J S, Tye R S. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores [J]. AAPG Bulletin, 2000, 84(8): 1205-1228.

    [25]

    Kelly S. Scaling and hierarchy in braided rivers and their deposits: Examples and implications for reservoir modelling[M]//Smith G H S, Best J L, Bristow C S, et al. Braided Rivers: Process, Deposits, Ecology and Management. Oxford, UK: International Association of Sedimentologists, 2006: 75-106.

    [26]

    金振奎, 杨有星, 尚建林, 等. 辫状河砂体构型及定量参数研究: 以阜康、柳林和延安地区辫状河露头为例[J]. 天然气地球科学, 2014, 25(3):311-317

    JIN Zhenkui, YANG Youxing, SHANG Jianlin, et al. Sandbody architecture and quantitative parameters of single channel sandbodies of braided river: cases from outcrops of braided river in Fukang, Liulin and Yanan areas [J]. Natural Gas Geoscience, 2014, 25(3): 311-317.

  • 加载中

(11)

(3)

计量
  • 文章访问数:  1354
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-02-23
修回日期:  2022-05-23
录用日期:  2022-05-23
刊出日期:  2022-12-28

目录