西南印度洋中脊27洋脊段新火山脊岩浆深部过程研究—来自斜长石斑晶的制约

王聪浩, 刘佳, 陶春辉, 李伟. 西南印度洋中脊27洋脊段新火山脊岩浆深部过程研究—来自斜长石斑晶的制约[J]. 海洋地质与第四纪地质, 2022, 42(6): 11-20. doi: 10.16562/j.cnki.0256-1492.2022040101
引用本文: 王聪浩, 刘佳, 陶春辉, 李伟. 西南印度洋中脊27洋脊段新火山脊岩浆深部过程研究—来自斜长石斑晶的制约[J]. 海洋地质与第四纪地质, 2022, 42(6): 11-20. doi: 10.16562/j.cnki.0256-1492.2022040101
WANG Conghao, LIU Jia, TAO Chunhui, LI Wei. Deep magmatic process of new volcano ridge in Segment 27, Southwest Indian Ridge: Constraints from plagioclase phenocrysts[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 11-20. doi: 10.16562/j.cnki.0256-1492.2022040101
Citation: WANG Conghao, LIU Jia, TAO Chunhui, LI Wei. Deep magmatic process of new volcano ridge in Segment 27, Southwest Indian Ridge: Constraints from plagioclase phenocrysts[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 11-20. doi: 10.16562/j.cnki.0256-1492.2022040101

西南印度洋中脊27洋脊段新火山脊岩浆深部过程研究—来自斜长石斑晶的制约

  • 基金项目: 国家重点研发课题“超慢速扩张洋脊局部岩浆供给的深部过程及其成矿效应研究”(2018YFC0309902)
详细信息
    作者简介: 王聪浩(1996—),男,硕士,主要从事洋中脊岩浆作用研究,E-mail:2863689642@qq.com
  • 中图分类号: P744

Deep magmatic process of new volcano ridge in Segment 27, Southwest Indian Ridge: Constraints from plagioclase phenocrysts

  • 前人对超慢速扩张西南印度洋脊(SWIR)玄武岩的研究多基于全岩粉末样品,而对能够记录更多岩浆过程的矿物斑晶开展的工作则较为匮乏。本文对西南印度洋脊断桥热液区所在的27段洋脊富含斜长石斑晶的玄武岩进行了全岩和单矿物的地球化学研究。玄武岩样品(34IV-TVG07 和 30III-TVG14)SiO2含量为49.16%和49.50%, MgO含量分别为6.76%和6.52%。全岩微量元素总体上和N-MORB(normal mid-ocean ridge basalts)类似。电子探针测试结果显示,斜长石的An值范围变化较大(76.2~87.9),且绝大部分的斜长石斑晶An值都在80以上,比SWIR 64°E 的Mount Jourdanne火山斜长石超斑玄武岩中的斜长石An值高得多(<70),暗示斜长石的成因不同于Mount Jourdanne,不是由下洋壳辉长岩中的斜长石被后期岩浆直接机械捕获携带上升而形成。运用Petrolg3软件计算模拟也显示斜长石无法由其寄主岩浆直接结晶产生。结合实验岩石学结果以及西南印度洋中脊地幔中存在古老地幔楔熔融残余的多方面地球化学证据推测,断桥区玄武岩中的高An值斜长石斑晶最有可能由软流圈地幔中的古老、亏损的岛弧地幔楔残余熔融形成的岩浆结晶形成。

  • 加载中
  • 图 1  研究区水深图

    Figure 1. 

    图 2  西南印度洋中脊(SWIR)27段岩浆房示意图[5]

    Figure 2. 

    图 3  玄武岩手标本和镜下照片

    Figure 3. 

    图 4  西南印度洋中脊27洋脊段玄武岩微量元素图

    Figure 4. 

    图 5  斑晶电子探针分析点位

    Figure 5. 

    图 6  斜长石斑晶An值

    Figure 6. 

    表 1  西南印度洋中脊27段含长石斑晶玄武岩的主量元素含量

    Table 1.  Major element concentrations of plagioclase-hosted basalt from Segment 27, SWIR

    样品编号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5LOISUM
    30III-TVG1449.501.3017.8310.280.166.5211.982.650.200.12−0.28100.25
    34IV-TVG0749.160.9818.259.430.156.7612.902.530.120.09−0.4599.93
      注:主量元素单位:wt/%。
    下载: 导出CSV

    表 2  西南印度洋中脊27段含长石斑晶玄武岩微量元素含量

    Table 2.  Trace element concentrations of plagioclase-hosted basalt from Segment 27, SWIR

    样品编号LiBeScVCrCoNiCuZnGaRbSrY
    30III-TVG144.320.5037.60264.25204.3039.5469.0060.4379.9117.852.03141.3932.82
    34IV-TVG074.250.3738.90231.06272.0436.6762.9660.6067.2816.161.05134.4924.60
    样品编号ZrNbSnCsBaLaCePrNdSmEuGdTb
    30III-TVG1486.881.530.950.0310.102.518.391.458.603.011.134.340.86
    34IV-TVG0756.770.970.620.036.771.725.591.015.852.290.883.250.64
    样品编号DyHoErTmYbLuHfTaTlPbThU
    30III-TVG145.551.123.350.483.230.492.400.120.080.720.120.11
    34IV-TVG074.240.892.640.392.550.371.580.060.050.500.080.11
      注:微量元素单位:wt/10−6
    下载: 导出CSV

    表 3  斜长石斑晶电子探针分析结果

    Table 3.  Major element concentrations for plagioclase phenocrysts

    分析点号SiO2Na2OK2OFeOAl2O3MgOCaOMnOTiO2Cr2O3NiOTotalAn
    30-III-TVG14(2)1-边45.791.590.020.3433.630.2016.920.020.0598.5485.41
    30-III-TVG14(2)1-幔45.311.380.020.4033.470.1816.980.040.050.010.0197.8487.06
    30-III-TVG14(2)1-核46.211.520.010.2933.010.2116.780.040.0498.1185.87
    30-III-TVG14(2)2-边46.551.730.010.3632.910.2216.810.020.040.0198.6684.26
    30-III-TVG14(2)2-幔46.321.590.010.3933.200.2316.780.010.010.0198.5685.29
    30-III-TVG14(2)2-核46.901.800.030.3633.100.2316.640.010.0499.1183.52
    30-III-TVG14(2)3-边46.571.620.020.3033.390.2116.800.030.0398.9785.05
    30-III-TVG14(2)3-幔47.081.790.000.3233.360.2316.820.010.0299.6383.85
    30-III-TVG14(2)3-核46.641.730.030.3233.130.2216.610.030.040.0098.7384.00
    30-III-TVG14(2)4-边47.311.870.020.3333.120.2216.440.0399.3482.83
    30-III-TVG14(2)4-幔46.071.410.020.3033.900.1617.230.010.010.0199.1187.04
    30-III-TVG14(2)4-核46.861.500.010.3133.810.1717.130.070.020.0299.9186.23
    30-III-TVG14(2)5-边47.341.800.030.3333.390.2516.600.010.010.020.0299.8083.45
    30-III-TVG14(2)5-幔47.401.760.030.3733.040.2016.500.050.010.0499.3983.68
    30-III-TVG14(2)5-核47.291.800.020.3333.340.2216.600.0399.6483.45
    30-III-TVG14(2)6-边47.441.880.010.3433.180.2316.650.010.050.010.0199.8182.95
    30-III-TVG14(2)6-幔47.041.740.030.3433.140.2116.470.0298.9783.83
    30-III-TVG14(2)6-核47.491.880.010.3533.420.2116.420.020.050.0199.8582.76
    30-III-TVG14(2)7-边47.251.800.030.3333.450.2116.660.030.020.0199.7783.54
    30-III-TVG14(2)7-幔47.251.860.020.3433.420.2116.660.010.0099.7783.11
    30-III-TVG14(2)7-核46.781.730.030.2933.560.2216.760.050.070.0799.5484.17
    30-III-TVG14(2)8-边47.051.820.020.3633.260.2216.730.030.0399.5283.47
    30-III-TVG14(2)8-幔46.771.700.030.3833.520.2016.790.010.0299.4284.37
    30-III-TVG14(2)8-核46.831.720.020.3333.420.2016.770.030.020.070.0199.4384.23
    34IV-TVG07(1)13-边47.741.900.010.4133.220.1916.460.030.020.0199.9882.72
    34IV-TVG07(1)13-幔47.341.790.020.4033.430.1616.630.0199.7883.57
    34IV-TVG07(1)13-核47.501.780.020.3833.490.1816.570.010.0699.9983.65
    34IV-TVG07(1)12-边47.281.700.030.3633.840.1916.830.04100.2884.42
    34IV-TVG07(1)12-幔47.411.570.020.3233.700.2116.880.000.06100.1885.53
    34IV-TVG07(1)12-核47.451.740.030.3633.700.2116.840.04100.3684.10
    34IV-TVG07(1)11-边47.851.860.020.3533.550.1716.590.07100.4583.04
    34IV-TVG07(1)11-幔46.531.670.010.3933.600.1616.890.020.000.0199.2984.79
    34IV-TVG07(1)11-核46.441.680.010.3433.750.1716.910.040.0399.3784.74
    34IV-TVG07(1)10-边47.862.120.010.3532.730.2016.140.060.0399.5180.73
    34IV-TVG07(1)10-幔49.052.610.030.3532.120.2615.260.030.0299.7476.23
    34IV-TVG07(1)10-核49.202.420.020.2832.480.2015.590.020.070.04100.3277.99
    34IV-TVG07(1)9-边46.941.710.010.3533.930.1716.980.050.01100.1484.57
    34IV-TVG07(1)9-幔47.081.750.020.3534.080.1816.930.04100.4284.13
    34IV-TVG07(1)9-核46.771.630.010.3533.730.1917.010.0299.7185.17
    34IV-TVG07(1)8-边47.241.630.010.3733.700.1616.830.000.040.020.02100.0185.02
    34IV-TVG07(1)8-幔47.952.150.010.3733.250.2116.200.030.06100.2480.59
    34IV-TVG07(1)8-核47.592.060.020.3533.020.2616.250.020.0599.6281.23
    34IV-TVG07(1)7-边46.971.640.010.3733.190.2016.670.0199.0584.87
    34IV-TVG07(1)7-幔46.271.770.060.4433.540.1816.600.010.0198.8783.54
    34IV-TVG07(1)7-核46.961.710.020.3533.780.1517.010.020.03100.0384.51
    34IV-TVG07(1)5-边48.202.440.020.3732.190.2215.550.030.0499.0577.81
    34IV-TVG07(1)5-幔47.752.220.020.4132.550.1716.020.010.030.070.0199.2679.81
    34IV-TVG07(1)5-核47.691.980.030.3933.010.1516.240.010.0199.5281.76
    34IV-TVG07(1)4-边47.251.960.020.3832.860.1616.360.020.0299.0382.05
    34IV-TVG07(1)4-幔47.962.010.010.3932.710.2015.990.010.010.0199.3181.41
    34IV-TVG07(1)4-核46.511.820.010.3533.300.1416.660.030.060.0198.8983.43
    34IV-TVG07(1)3-边46.321.600.020.3533.780.2016.830.030.020.0299.1685.24
    34IV-TVG07(1)3-幔46.451.520.010.3633.880.1717.150.030.0599.6286.11
    34IV-TVG07(1)3-核46.031.380.020.2934.080.1717.370.050.0299.4087.35
    34IV-TVG07(1)2-边47.261.970.010.3833.260.1816.480.000.020.0699.6282.17
    34IV-TVG07(1)2-幔46.611.770.040.4133.330.1916.690.030.030.0199.0983.73
    34IV-TVG07(1)2-核47.321.730.010.3633.410.1816.760.020.0399.8284.17
    34IV-TVG07(1)1-边46.411.520.020.4033.790.1817.000.010.070.070.0199.4786.01
    34IV-TVG07(1)1-幔47.071.700.030.3633.630.1716.800.030.060.0399.8784.41
    34IV-TVG07(1)1-核47.241.740.030.4333.870.1817.110.02100.6184.36
    34IV-TVG07(2)1-边47.831.970.020.4033.340.1916.480.000.02100.2482.09
    34IV-TVG07(2)1-幔47.141.930.020.4132.850.1816.320.010.0298.8982.24
    34IV-TVG07(2)1-核46.911.620.030.3633.960.1616.940.0199.9985.10
    34IV-TVG07(2)2-边45.901.540.020.3433.260.1316.600.050.0197.8685.55
    34IV-TVG07(2)2-幔45.941.320.020.3633.860.1417.4299.0687.86
    34IV-TVG07(2)2-核44.941.420.030.3732.440.1616.410.030.040.020.0395.8786.32
    34IV-TVG07(2)3-边47.752.210.020.3532.390.1916.010.0398.9479.96
    34IV-TVG07(2)3-幔49.032.600.000.3431.840.2415.250.060.060.030.0599.4976.42
    34IV-TVG07(2)3-核48.172.280.030.4332.220.2115.620.010.040.0199.0178.98
    34IV-TVG07(2)4-边47.101.970.020.3932.750.2016.010.020.0198.4681.72
    34IV-TVG07(2)4-幔46.561.500.040.4133.070.1516.720.040.090.0198.5985.85
    34IV-TVG07(2)4-核47.211.890.020.4533.030.1916.230.040.0199.0782.47
    34IV-TVG07(2)5-边47.021.530.020.3833.760.2017.020.030.010.03100.0085.94
    34IV-TVG07(2)5-幔46.371.620.020.3733.420.2216.880.020.0198.9085.14
    34IV-TVG07(2)5-核46.811.600.020.3833.260.2016.880.010.0199.1685.23
    34IV-TVG07(2)6-边46.901.640.020.4333.440.1916.880.0199.5084.95
    34IV-TVG07(2)6-幔46.891.540.010.3833.640.1616.970.040.0199.6585.81
    34IV-TVG07(2)6-幔46.611.520.020.3933.790.1617.060.020.0399.5986.05
    34IV-TVG07(2)6-幔46.931.670.010.3933.570.1616.830.030.020.0499.6484.74
    34IV-TVG07(2)6-核47.011.510.020.3733.220.1616.850.030.0199.1785.94
    34IV-TVG07(2)7-边47.481.780.020.4833.340.2116.260.020.060.0299.660.83
    34IV-TVG07(2)7-幔48.942.420.040.4532.290.2215.3499.690.78
    34IV-TVG07(2)7-幔47.581.980.010.4533.020.2116.350.010.0599.660.82
    34IV-TVG07(2)7-幔47.651.680.030.4233.030.2016.330.0199.330.84
    34IV-TVG07(2)7-核48.362.100.020.3932.900.1915.860.010.000.0199.840.81
    34IV-TVG07(2)8-边46.241.380.020.3133.650.1517.100.020.0598.930.87
    34IV-TVG07(2)8-幔46.341.660.030.3533.470.2016.620.020.040.0198.740.85
    34IV-TVG07(2)8-核46.871.740.030.3933.580.2016.720.030.0399.590.84
    34IV-TVG07(2)10-边47.061.780.020.3633.400.1716.550.020.010.050.0199.420.84
    34IV-TVG07(2)10-幔46.671.620.020.3533.250.1716.770.010.0298.870.85
    34IV-TVG07(2)10-核45.811.690.030.3733.110.1616.690.0597.910.84
      注:主量元素单位:wt/%。
    下载: 导出CSV

    表 4  Petrolog3结晶分异模拟计算结果

    Table 4.  Results of Petrolog3 simulation

    样品编号模拟压力最高An值
    30III-TVG141Kbar78.2
    3Kbar74.8
    5Kbar71.3
    7Kbar67.9
    34IV-TVG071Kbar80.5
    3Kbar77.1
    5Kbar73.7
    7Kbar70.3
    40II-TVG041Kbar75.4
    3Kbar71.9
    5Kbar68.5
    7Kbar65.1
      注:橄榄石、斜长石、单斜辉石模型均来自文献[19]。
    下载: 导出CSV
  • [1]

    Sauter D, Cannat M. The ultraslow spreading Southwest Indian ridge[M]//Rona P A, DeveyC W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D. C.: American Geophysical Union, 2010, 88: 153-173.

    [2]

    孙国洪, 田丽艳, 李小虎, 等. 西南印度洋中脊岩石地球化学特征及其岩浆作用研究[J]. 海洋地质与第四纪地质, 2021, 41(5):126-138

    SUN Guohong, TIAN Liyan, LI Xiaohu, et al. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138.

    [3]

    Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge [J]. Nature, 2003, 426(6965): 405-412. doi: 10.1038/nature02128

    [4]

    Li J B, Jian H C, Chen Y J, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge [J]. Geophysical Research Letters, 2015, 42(8): 2656-2663. doi: 10.1002/2014GL062521

    [5]

    Jian H C, Singh S C, Chen Y J, et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge [J]. Geology, 2017, 45(2): 143-146. doi: 10.1130/G38356.1

    [6]

    Chen J, Cannat M, Tao C H, et al. 780 thousand years of upper - crustal construction at a melt-rich segment of the ultraslow spreading southwest Indian Ridge 50°28′E [J]. Journal of Geophysical Research:Solid Earth, 2021, 126(10): e2021JB022152.

    [7]

    Yang A Y, Zhao T P, Zhou M F, et al. Isotopically enriched N-MORB: A new geochemical signature of off - axis plume - ridge interaction–A case study at 50°28′E, Southwest Indian Ridge [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1): 191-213. doi: 10.1002/2016JB013284

    [8]

    Yu X, Dick H J B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2020, 531: 116002. doi: 10.1016/j.jpgl.2019.116002

    [9]

    李伟. 西南印度洋中脊玄武岩岩石地球化学特征: 对超慢速扩张的启示[D]. 中国地质大学博士学位论文, 2017

    LI Wei. Petrogeochemical characteristics of basalts from Southwest Indian Ridge: Implications for magmatic processes at ultra-slow spreading ridge[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2017.

    [10]

    初凤友, 陈建林, 马维林, 等. 中太平洋海山玄武岩的岩石学特征与年代[J]. 海洋地质与第四纪地质, 2005, 25(4):55-59

    CHU Fengyou, CHEN Jianlin, MA Weilin, et al. Petrologic characteristics and ages of basalt in Middle Pacific mountains [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 55-59.

    [11]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [12]

    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    [13]

    Li W, Tao C H, Zhang W, et al. Melt inclusions in plagioclase macrocrysts at mount Jourdanne, southwest Indian ridge (~64ºE): implications for an enriched mantle source and shallow magmatic processes [J]. Minerals, 2019, 9(8): 493. doi: 10.3390/min9080493

    [14]

    Beard J S, Borgia A. Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica [J]. Contributions to Mineralogy and Petrology, 1989, 103(1): 110-122. doi: 10.1007/BF00371368

    [15]

    Crawford A J, Falloon T J, Eggins S. The origin of island arc high-alumina basalts [J]. Contributions to Mineralogy and Petrology, 1987, 97(3): 417-430. doi: 10.1007/BF00372004

    [16]

    Sinton C W, Christie D M, Coombs V L, et al. Near-primary melt inclusions in anorthite phenocrysts from the Galapagos Platfrom [J]. Earth and Planetary Science Letters, 1993, 119(4): 527-537. doi: 10.1016/0012-821X(93)90060-M

    [17]

    Stolz A J, Varne R, Wheller G E, et al. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc [J]. Contributions to Mineralogy and Petrology, 1988, 98(3): 374-389. doi: 10.1007/BF00375187

    [18]

    Kudo A M, Weill D F. An igneous plagioclase thermometer [J]. Contributions to Mineralogy and Petrology, 1970, 25(1): 52-65. doi: 10.1007/BF00383062

    [19]

    Duncan R A, Green D H. The genesis of refractory melts in the formation of oceanic crust [J]. Contributions to Mineralogy and Petrology, 1987, 96(3): 326-342. doi: 10.1007/BF00371252

    [20]

    Hirschmann M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629-653. doi: 10.1146/annurev.earth.34.031405.125211

    [21]

    Wang W, Kelley K A, Li Z G, et al. Volatile element evidence of local MORB mantle heterogeneity beneath the southwest Indian ridge, 48º-51ºE [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(7): e2021GC009647.

    [22]

    Liu J, Tao C H, Zhou J P, et al. Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue [J]. Earth and Planetary Science Letters, 2022, 584: 117455. doi: 10.1016/j.jpgl.2022.117455

    [23]

    Panjasawatwong Y, Danyushevsky L V, Crawford A J, et al. An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase [J]. Contributions to Mineralogy and Petrology, 1995, 118(4): 420-432. doi: 10.1007/s004100050024

    [24]

    Danyushevsky L V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas [J]. Journal of Volcanology and Geothermal Research, 2001, 110(3-4): 265-280. doi: 10.1016/S0377-0273(01)00213-X

    [25]

    Gao C G, Dick H J B, Liu Y, et al. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise [J]. Lithos, 2016, 246-247: 48-60. doi: 10.1016/j.lithos.2015.12.007

    [26]

    Michael P. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O [J]. Earth and Planetary Science Letters, 1995, 131(3-4): 301-320. doi: 10.1016/0012-821X(95)00023-6

  • 加载中

(6)

(4)

计量
  • 文章访问数:  1707
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2022-04-01
修回日期:  2022-04-27
刊出日期:  2022-12-28

目录