Controlling factors and distribution of geochemical characteristics of the surface sediments in the Yellow River Delta
-
摘要:
基于黄河三角洲周边海域180个站位的表层沉积物资料,分析了16种地球化学元素的分布特征,利用多元统计分析、数值模拟、元素比值等方法,探讨了沉积物粒度、水动力环境以及物质来源等因素对于表层沉积物地球化学特征的影响。在地球化学元素分布的基础上,运用聚类分析将研究区划分为6个地球化学区域。I-2区、I-3区、II-1区和II-2区东部的大部分元素(TFe2O3、Al2O3、MgO、MnO、K2O、Cr、Ni、Cu)含量较高,沉积物粒度较细;I-1区、II-3区的SiO2含量较高,沉积物粒度较粗。潮流控制着沉积物的起动及运移,潮余流影响着细粒沉积物以及多数元素的富集,水动力作用通过改变沉积物粒度空间格局进而控制这些元素的分布。研究区黄河物质输入以及人类活动影响的区域性差异明显,黄河物质输入主要作用于现行黄河口海域,人类活动对埕北老黄河口的Cd、Zn、Pb、P2O5影响最为显著。自然因素是控制研究区表层沉积物地球化学特征分布的主要原因,人类活动则进一步改变了部分元素的空间分布规律。
Abstract:The distribution characteristics of 16 elements in the surface sediments from 180 sites in the Yellow River Delta were analyzed. The effects of sediment grain size, hydrodynamic environment, and material sources on geochemical characteristics of the surface sediments were analyzed using multivariate statistical analysis, numerical modelling, and element ratio; and the main controlling factors of geochemical characteristics of surface sediments in the study area were discussed. Based on the distribution of geochemical elements, the study area was divided into six geochemical regions by cluster analysis. Most of the elements (TFe2O3, Al2O3, MgO, MnO, K2O, Cr, Ni, Cu) in Regions I-2, I-3, II-2, and the eastern part of II-1 are characterzied by elevated concentrations, and the sediment grain size in these areas is fine. The contents of SiO2 are higher in Regions I-1 and II-3, and the sediment grain size is coarser. Results show that tidal current controled the initiation and transport of sediment in the study area, and tidal residual currents affected the enrichment of fine-grained sediment and most elements. Local hydrodynamic environment controlled the spatial pattern of grain size in surface sediments. Obvious regional differences in material input from the Yellow River and human activities were revealed. The modern Yellow River estuary was strongly controlled by material input from the Yellow River. Human activities had a stronger impact on Chengbei Old Yellow River estuary, especially Cd, Zn, Pb and P2O5. Natural factors were the main factors on the geochemical distribution of surface sediments, while human activities further alytered the spatial distribution of some elements.
-
图 1 黄河三角洲周边海域表层沉积物采样站位图[19]
Figure 1.
表 1 潮流潮位验证点概况
Table 1. Information of tidal current and tidal level verified on site
潮流验证点 北纬 东经 潮位验证点 北纬 东经 1 38°11′51.84″ 118°17′58.62″ 大口河(1#) 38°15′ 117°50′ 2 38°14′04.20″ 118°23′39.60″ 塘沽(2#) 38°59′ 117°45′ 3 38°16′45.12″ 118°39′06.54″ 曹妃甸(3#) 38°57′ 118°31′ 4 38°13′30.48″ 119°00′43.20″ 八角(4#) 37°39′ 121°08′ 5 37°54′30.60″ 119°18′12.60″ 北隍城(5#) 38°22′ 120°51′ 6 37°43′17.76″ 119°25′00.00″ 大连港(6#) 38°56′ 121°40′ 表 2 研究区表层沉积物常量元素含量
Table 2. Contents of major elements of surface sediments in the study area
% 常量组分 SiO2 TFe2O3 Al2O3 TiO2 CaO MgO K2O MnO P2O5 平均值 59.38 4.46 12.30 0.66 6.77 2.37 2.52 2.71 0.09 最大值 68.94 6.11 14.57 0.76 10.55 3.19 2.93 3.88 0.13 最小值 45.73 2.84 8.89 0.45 4.16 1.43 2.06 1.83 0.05 表 3 研究区表层沉积物微量元素含量
Table 3. Contents of trace elements of surface sediments in the study area
mg/kg 微量组分 Cr Ni Cu Zn Cd Pb Zr 平均值 67.45 27.58 23.73 79.60 0.13 22.60 273.10 最大值 83.20 40.50 66.33 332.96 0.36 39.20 685.00 最小值 36.80 14.80 4.18 34.70 0.07 6.56 113.79 表 4 埕北老黄河口海域表层沉积物元素相关性分析
Table 4. Correlation coefficients between values of elements and average particle size in Chengbei Old Yellow River estuary
SiO2 TFe2O3 Al2O3 TiO2 CaO MgO K2O MnO P2O5 Cr Ni Cu Zn Cd Pb Zr Mz SiO2 1 TFe2O3 −0.99 1 Al2O3 −0.96 0.98 1 TiO2 −0.57 0.58 0.50 1 CaO −0.57 0.44 0.41 0.33 1 MgO −0.81 0.81 0.72 0.58 0.38 1 K2O −0.96 0.99 0.99 0.49 0.36 0.75 1 MnO −0.94 0.94 0.93 0.55 0.47 0.75 0.91 1 P2O5 0.17 −0.19 −0.27 0.26 −0.07 0.16 −0.26 −0.15 1 Cr −0.84 0.84 0.78 0.70 0.45 0.84 0.80 0.88 −0.01 1 Ni −0.91 0.92 0.92 0.52 0.44 0.69 0.91 0.76 −0.24 0.75 1 Cu −0.78 0.78 0.77 0.40 0.39 0.57 0.76 −0.11 −0.24 0.60 0.74 1 Zn 0.11 −0.10 −0.11 0.00 −0.01 −0.11 −0.13 −0.16 −0.07 0.16 −0.06 0.03 1 Cd 0.12 −0.15 −0.17 −0.02 −0.07 −0.09 −0.17 0.36 0.13 0.18 −0.16 −0.01 0.98 1 Pb −0.22 0.23 0.21 0.26 0.12 0.11 0.21 0.27 0.10 0.17 0.38 0.25 0.48 0.37 1 Zr 0.78 −0.77 −0.79 −0.08 −0.38 −0.64 −0.78 −0.73 −0.14 0.52 −0.68 −0.61 0.11 0.11 0.03 1 Mz −0.94 0.94 0.94 0.47 0.43 0.75 0.94 0.85 −0.20 0.75 0.86 0.77 0.10 0.14 0.13 −0.78 1 注:n=62。 表 5 现行黄河口海域表层沉积物元素相关性分析
Table 5. Correlation coefficients between values of elements and average particle size in modern Yellow River estuary
SiO2 TFe2O3 Al2O3 TiO2 CaO MgO K2O MnO P2O5 Cr Ni Cu Zn Cd Pb Zr Mz SiO2 1 TFe2O3 −0.91 1 Al2O3 −0.78 0.84 1 TiO2 −0.10 0.31 0.16 1 CaO −0.80 0.74 0.54 0.08 1 MgO −0.88 0.92 0.77 0.30 0.80 1 K2O −0.75 0.77 0.84 0.14 0.57 0.69 1 MnO −0.78 0.87 0.76 0.25 0.59 0.75 0.70 1 P2O5 0.11 −0.02 −0.27 0.71 0.06 0.06 0.34 −0.06 1 Cr −0.64 0.62 0.58 0.37 0.22 0.53 0.38 0.58 0.01 1 Ni −0.81 0.66 0.56 0.06 0.39 0.57 0.46 0.56 −0.2 0.78 1 Cu −0.87 0.90 0.79 0.20 0.70 0.80 0.76 0.81 −0.12 0.57 0.67 1 Zn −0.76 0.84 0.85 0.21 0.54 0.75 0.71 0.75 −0.19 0.59 0.61 0.82 1 Cd −0.68 0.50 0.21 0.01 0.41 0.49 0.26 0.36 0.02 0.54 0.80 0.46 0.39 1 Pb −0.81 0.78 0.70 0.10 0.66 0.74 0.71 0.72 −0.10 0.52 0.63 0.86 0.69 0.49 1 Zr 0.19 −0.14 −0.34 0.08 0.02 −0.07 0.23 −0.13 0.38 0.29 −0.28 0.15 0.24 0.01 0.07 1 Mz −0.74 0.58 0.54 0.05 0.34 0.50 0.45 0.48 −0.20 0.69 0.90 0.58 0.54 0.71 0.52 −0.25 1 注:n=118。 表 6 因子分析结果
Table 6. Results of factor analysis
元素
组分埕北老黄河口海域 现行黄河口海域 F1 F2 F3 F1 F2 F3 F4 SiO2 −0.988 0.007 −0.067 −0.829 −0.517 0.018 −0.079 TFe2O3 0.989 0.004 0.054 0.910 0.300 0.165 0.110 Al2O3 0.978 −0.013 −0.068 0.882 0.012 −0.020 0.385 TiO2 0.544 0.094 0.674 0.163 −0.045 0.955 0.104 CaO 0.503 0.028 0.123 0.792 0.212 −0.011 −0.333 MgO 0.789 −0.049 0.407 0.875 0.274 0.181 −0.030 K2O 0.973 −0.024 −0.048 0.855 0.068 −0.295 0.142 MnO 0.951 −0.001 0.066 0.836 0.188 0.135 0.161 P2O5 −0.237 0.011 0.835 −0.115 0.028 0.846 −0.393 Cr 0.833 −0.069 0.366 0.400 0.537 0.319 0.555 Ni 0.936 0.071 −0.026 0.446 0.776 −0.021 0.352 Cu 0.812 0.139 −0.103 0.882 0.292 0.040 0.114 Zn −0.114 0.966 0.011 0.825 0.159 0.054 0.312 Cd −0.168 0.924 0.050 0.243 0.933 0.007 −0.043 Pb 0.257 0.678 −0.002 0.808 0.334 −0.026 0.008 Zr −0.784 0.089 0.195 −0.093 0.021 0.189 −0.806 方差贡献 57.68% 13.53% 9.04% 45.48% 19.86% 11.40% 9.96% 累积方差贡献 57.68% 71.21% 80.25% 45.48% 65.34% 76.74% 86.70% -
[1] 韩宗珠, 张军强, 邹昊, 等. 渤海湾北部底质沉积物中黏土矿物组成与物源研究[J]. 中国海洋大学学报, 2011, 41(11):95-102
HAN Zongzhu, ZHANG Junqiang, ZOU Hao, et al. Characteristics and provenance of clay mineral assemblage of sediments from the northern part of the Bohai Bay [J]. Periodical of Ocean University of China, 2011, 41(11): 95-102.
[2] Li B W, Jia Y G, Liu J P, et al. The controlling factors of high suspended sediment concentration in the intertidal flat off the Huanghe River Estuary [J]. Acta Oceanologica Sinica, 2020, 39(10): 96-106. doi: 10.1007/s13131-020-1679-9
[3] Bi N S, Yang Z S, Wang H J, et al. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period [J]. Estuarine, Coastal and Shelf Science, 2010, 86(3): 352-362. doi: 10.1016/j.ecss.2009.06.005
[4] 吕成功, 陈真. 渤海表层沉积物地球化学分析[J]. 青岛海洋大学学报, 1993, 23(3):91-98
LV Chenggong, CHEN Zhen. Geochemical analysis of the surface sediments of the Bohai Sea [J]. Journal of Ocean University of Qingdao, 1993, 23(3): 91-98.
[5] 赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994
ZHAO Yiyang, YAN Mingcai. Geochemistry of Sediments of the China Shelf Sea[M]. Beijing: Science Press, 1994.
[6] 蓝先洪, 李日辉, 王中波, 等. 渤海西部表层沉积物的地球化学记录[J]. 海洋地质与第四纪地质, 2017, 37(3):75-85 doi: 10.16562/j.cnki.0256-1492.2017.03.008
LAN Xianhong, LI Rihui, WANG Zhongbo, et al. Geochmical records of surface sediments in the western Bohai Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 75-85. doi: 10.16562/j.cnki.0256-1492.2017.03.008
[7] 赵玉玲, 冯秀丽, 宋湦, 等. 现代黄河三角洲附近海域表层沉积物地球化学分区[J]. 海洋科学, 2016, 40(9):98-106 doi: 10.11759/hykx20160422002
ZHAO Yuling, FENG Xiuli, SONG Sheng, et al. Geochemical partition of surface sediments in the seas near the modern Yellow River Delta [J]. Marine Sciences, 2016, 40(9): 98-106. doi: 10.11759/hykx20160422002
[8] Qiao S Q, Shi X F, Gao J J, et al. The distribution and variation of elements in sediments off the Huanghe (Yellow) River mouth [J]. Chinese Journal of Oceanology and Limnology, 2013, 31(4): 876-885. doi: 10.1007/s00343-013-2126-y
[9] Chu Z X, Sun X G, Zhai S K, et al. Changing pattern of accretion/erosion of the modern Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images [J]. Marine Geology, 2006, 227(1-2): 13-30. doi: 10.1016/j.margeo.2005.11.013
[10] Li G S, Wang H L, Liao H P. Numerical simulation on seasonal transport variations and mechanisms of suspended sediment discharged from the Yellow River to the Bohai Sea [J]. Journal of Geographical Sciences, 2010, 20(6): 923-937. doi: 10.1007/s11442-010-0821-6
[11] 张连杰, 朱龙海, 张盼, 等. 渤海湾表层沉积物元素地球化学分布特征与影响因素[J]. 海洋科学, 2019, 43(6):78-87 doi: 10.11759/hykx20190122004
ZHANG Lianjie, ZHU Longhai, ZHANG Pan, et al. Geochemical distribution and its controlling factors of the surface sediments in the Bohai Bay [J]. Marine Sciences, 2019, 43(6): 78-87. doi: 10.11759/hykx20190122004
[12] 徐艳东, 高会旺, 魏潇, 等. 莱州湾表层沉积物中重金属污染特征和生态风险评估[J]. 中国海洋大学学报, 2021, 51(11):74-85
XU Yandong, GAO Huiwang, WEI Xiao, et al. Heavy metals and their ecological risk in the surface sediments of Laizhou Bay [J]. Periodical of Ocean University of China, 2021, 51(11): 74-85.
[13] Wang Z H, Guo X, Zhang K, et al. Environmental changes in Jiaozhou Bay of northern China during the past 90 years using metals and biogenic elements in sediments [J]. Journal of Environmental Sciences, 2017, 53: 301-312. doi: 10.1016/j.jes.2016.06.002
[14] Zhang P, Hu R J, Zhu L H, et al. Distributions and contamination assessment of heavy metals in the surface sediments of western Laizhou Bay: Implications for the sources and influencing factors [J]. Marine Pollution Bulletin, 2017, 119(1): 429-438. doi: 10.1016/j.marpolbul.2017.03.046
[15] Wei W H, Zhang J, Zeng H Z. Particulate element inventory of the Huanghe (Yellow River): A large, high-turbidity river [J]. Geochimica et Cosmochimica Acta, 1992, 56(10): 3669-3680. doi: 10.1016/0016-7037(92)90160-K
[16] Liu Q Q, Wang F F, Meng F P, et al. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index [J]. Marine Pollution Bulletin, 2018, 126: 293-303. doi: 10.1016/j.marpolbul.2017.11.017
[17] 刘志杰, 李培英, 张晓龙, 等. 黄河三角洲滨海湿地表层沉积物重金属区域分布及生态风险评价[J]. 环境科学, 2012, 33(4):1182-1188 doi: 10.13227/j.hjkx.2012.04.035
LIU Zhijie, LI Peiying, ZHANG Xiaolong, et al. Regional distribution and ecological risk evaluation of heavy metals in surface sediments from coastal wetlands of the Yellow River Delta [J]. Environmental Science, 2012, 33(4): 1182-1188. doi: 10.13227/j.hjkx.2012.04.035
[18] Hu N J, Liu J H, Huang P, et al. Sources, geochemical speciation, and risk assessment of metals in coastal sediments: a case study in the Bohai Sea, China [J]. Environmental Earth Sciences, 2017, 76(8): 309. doi: 10.1007/s12665-017-6599-4
[19] Liu L, Wang H J, Yang Z S, et al. Coarsening of sediments from the Huanghe (Yellow River) delta-coast and its environmental implications [J]. Geomorphology, 2022, 401: 108105. doi: 10.1016/j.geomorph.2021.108105
[20] Udden J A. Mechanical Composition of clastic sediments [J]. GSA Bulletin, 1914, 25(1): 655-744. doi: 10.1130/GSAB-25-655
[21] Wentworth C K. A scale of grade and class terms for clastic sediments [J]. The Journal of Geology, 1922, 30(5): 377-392. doi: 10.1086/622910
[22] Folk R L, Ward W C. Brazos River Bar: A study in the significance of grain size parameters [J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[23] 郑世雯, 范德江, 刘明, 等. 渤海中部现代黄河沉积物影响范围的稀土元素证据[J]. 中国海洋大学学报, 2017, 47(6):95-103
ZHENG Shiwen, FAN Dejiang, LIU Ming, et al. Rare earth element evidence for the Modern Yellow River Origin sediments in the middle Bohai Sea [J]. Periodical of Ocean University of China, 2017, 47(6): 95-103.
[24] Fu Y T, Chen S L, Ji H Y, et al. The modern Yellow River Delta in transition: Causes and implications [J]. Marine Geology, 2021, 436: 106476. doi: 10.1016/j.margeo.2021.106476
[25] 林炳煌. 泉州湾沉积物粒度和元素组成特征及其沉积环境意义[D]. 厦门大学硕士学位论文, 2009
LIN Binghuang. Characteristics of sediment granularity, element geochemistry and their significance for identifying sedimentary dynamic environment in the Quanzhou estuary[D]. Master Dissertation of Xiamen University, 2009.
[26] 王悦, 林霄沛. 地形变化下渤海湾M2分潮潮致余流的相应变化及其对污染物输运的影响[J]. 中国海洋大学学报, 2006, 36(1):1-6
WANG Yue, LIN Xiaopei. The variation of M2 constituent corresponding to the change of topography in Bohai Bay and its effects on the transport of pollutants [J]. Periodical of Ocean University of China, 2006, 36(1): 1-6.
[27] 赵保仁, 庄国文, 曹德明, 等. 渤海的环流、潮余流及其对沉积物分布的影响[J]. 海洋与湖沼, 1995, 26(5):466-473 doi: 10.3321/j.issn:0029-814X.1995.05.003
ZHAO Baoren, ZHUANG Guowen, CAO Deming, et al. Circulation, tidal residual currents and their effects on the sedimentations in the Bohai Sea [J]. Oceanologia et Limnologia Sinica, 1995, 26(5): 466-473. doi: 10.3321/j.issn:0029-814X.1995.05.003
[28] 李春雨. 黄河三角洲北部海域的冲淤演化与成因[J]. 海洋地质前沿, 2014, 30(11):17-21 doi: 10.16028/j.1009-2722.2014.11.004
LI Chunyu. Erosional and depositional pattern to the northern offshore area of the Yellow River Delta [J]. Marine Geology Frontiers, 2014, 30(11): 17-21. doi: 10.16028/j.1009-2722.2014.11.004
[29] 刘鑫仓, 刘艳玲, 迟万清, 等. 胶州湾潮余流和物质输送之间的关系[J]. 海洋湖沼通报, 2019, 40(2):10-17 doi: 10.13984/j.cnki.cn37-1141.2019.02.002
LIU Xincang, LIU Yanling, CHI Wanqing, et al. Relationship between tidal residual current and mass transport in Jiaozhou bay [J]. Transactions of Oceanology and Limnology, 2019, 40(2): 10-17. doi: 10.13984/j.cnki.cn37-1141.2019.02.002
[30] Howarth M J, Huthnance J M. Tidal and residual currents around a Norfolk Sandbank [J]. Estuarine, Coastal and Shelf Science, 1984, 19(1): 105-117. doi: 10.1016/0272-7714(84)90055-6
[31] 乔淑卿, 石学法, 王国庆, 等. 渤海底质沉积物粒度特征及输运趋势探讨[J]. 海洋学报, 2010, 32(4):139-147
QIAO Shuqing, SHI Xuefa, WANG Guoqing, et al. Discussion on grain-size characteristics of seafloor sediment and transport pattern in the Bohai Sea [J]. Acta Oceanologica Sinica, 2010, 32(4): 139-147.
[32] 袁萍, 毕乃双, 吴晓, 等. 现代黄河三角洲表层沉积物的空间分布特征[J]. 海洋地质与第四纪地质, 2016, 36(2):49-57 doi: 10.16562/j.cnki.0256-1492.2016.02.006
YUAN Ping, BI Naishuang, WU Xiao, et al. Surface sediments at the subaqueous Yellow River Delta: classification and distribution [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 49-57. doi: 10.16562/j.cnki.0256-1492.2016.02.006
[33] 任韧希子, 陈沈良. 黄河三角洲的沉积动力分区[J]. 上海国土资源, 2012, 33(2):62-68 doi: 10.3969/j.issn.2095-1329.2012.02.016
REN Renxizi, CHEN Shenliang. Sediment dynamics in the littoral zone of the Yellow River delta [J]. Shanghai Land & Resource, 2012, 33(2): 62-68. doi: 10.3969/j.issn.2095-1329.2012.02.016
[34] 窦衍光. 长江口邻近海域沉积物粒度和元素地球化学特征及其对沉积环境的指示[D]. 国家海洋局部第一海洋研究所硕士学位论文, 2007
DOU Yanguang. Characteristics of sediment granularity, element geochemistry and their significance for identifying sedimentary environment in the contiguous sea areas of Changjiang River Estuary[D]. Master Dissertation of First Institute of Oceanography, MNR, 2007.
[35] 刘素美, 张经. 沉积物中重金属的归一化问题: 以Al为例[J]. 东海海洋, 1998, 16(3):48-55
LIU Sumei, ZHANG Jing. Normalization of heavy metals to aluminum in marine sediments [J]. Donghai Marine Science, 1998, 16(3): 48-55.
[36] 岳维忠, 黄小平, 孙翠慈. 珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J]. 海洋与湖沼, 2007, 38(2):111-117 doi: 10.3321/j.issn:0029-814X.2007.02.003
YUE Weizhong, HUANG Xiaoping, SUN Cuici. Distribution and pollution of nitrogen and Phosphorus in surface sediments from the Pearl River estuary [J]. Oceanologia et Limnologia Sinica, 2007, 38(2): 111-117. doi: 10.3321/j.issn:0029-814X.2007.02.003
[37] Yang Z S, Ji Y J, Bi N S, et al. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison [J]. Estuarine, Coastal and Shelf Science, 2010, 93(3): 173-181.
[38] 吴明清, 文启忠, 潘景瑜, 等. 中国黄土的平均化学成分: 上部大陆地壳的一种典型代表[J]. 岩相古地理, 1995, 15(2):127-136
WU Mingqing, WEN Qizhong, PAN Jingyu, et al. Average chemical composition of loess in China: as a good pepresentative of the upper continental crust [J]. Sedimentary Facies and Palaeogeograpgy, 1995, 15(2): 127-136.
[39] 乔淑卿, 方习生, 石学法, 等. 黄河口及邻近渤海海域表层沉积物中CaO和蒙皂石分布及其对黄河入海物质运移的指示[J]. 海洋地质与第四纪地质, 2010, 30(1):17-23
QIAO Shuqing, FANG Xisheng, SHI Xuefa, et al. Distribution of CaO and smectite in surface sediments off the Yellow River mouth and in the nearby Bohai Sea and the implications for dispersion of the river sediments to the sea [J]. Marine Geology & Quaternary Geology, 2010, 30(1): 17-23.
[40] Xing G P, Wang H J, Yang Z S, et al. Spatial and temporal variation in erosion and accumulation of the subaqueous Yellow River Delta (1976-2004) [J]. Journal of Coastal Research, 2016, 74(sp1): 32-47.
[41] 柳后起. 黄河三角洲微量元素环境地球化学研究[D]. 中国科学技术大学博士学位论文, 2016
LIU Houqi. Environmental geochemistry research of trace elements in the Yellow River Delta[D]. Doctoral Dissertation of University of Science and Technology of China, 2016.
[42] Bi N S, Wang H J, Wu X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: process, pattern, and mechanisms [J]. Marine Geology, 2021, 437: 106516. doi: 10.1016/j.margeo.2021.106516
[43] 赵志梅, 秦延文. 渤海湾表层沉积物磷形态分析[J]. 海洋技术, 2006, 25(4):51-53,87 doi: 10.3969/j.issn.1003-2029.2006.04.014
ZHAO Zhimei, QIN Yanwen. The analysis of the phosphorus forms in the sediment of Bohai Bay [J]. Ocean Technology, 2006, 25(4): 51-53,87. doi: 10.3969/j.issn.1003-2029.2006.04.014
[44] 江辉煌. 渤海沉积物中生源要素的研究[D]. 中国海洋大学硕士学位论文, 2012
JIANG Huihuang. Study on biogenic elements in sediments of the Bohai Sea[D]. Master Dissertation of Ocean University of China, 2012.
[45] 李梦露. 磷观渤海: 由陆向海磷的输送和收支及其生态环境指示意义[D]. 自然资源部第一海洋研究所硕士学位论文, 2021
LI Menglu. Insighting into the Bohai Sea from the phosphorus dimension: A study of gluxes and budget of phosphorus from land to sea with implication for the environment change[D]. Master Dissertation of First Institute of Oceanography, MNR, 2021.
[46] 林建斌, 王剑锋. 水产养殖与生态营养[J]. 科学养鱼, 2009, 28(5):65-66
LIN Jianbin, WANG Jianfeng. Aquaculture and ecological nutrition [J]. Scientific Fish Farming, 2009, 28(5): 65-66.
[47] 张汉珍, 王菲菲, 姜磊, 等. 东营市挑河和神仙沟的河水重金属污染评价[J]. 安全与环境学报, 2017, 17(4):1536-1542 doi: 10.13637/j.issn.1009-6094.2017.04.063
ZHANG Hanzhen, WANG Feifei, JIANG Lei, et al. Assessment of heavy metal pollution in the surface water of Tiaohe river and Shenxiangou Brook, Dongying City, Shangdong [J]. Journal of Safety and Environment, 2017, 17(4): 1536-1542. doi: 10.13637/j.issn.1009-6094.2017.04.063
[48] 刘群群, 孟范平, 王菲菲, 等. 东营市北部海域沉积物中重金属的分布、来源及生态风险评价[J]. 环境科学, 2017, 38(9):3635-3644 doi: 10.13227/j.hjkx.201701048
LIU Qunqun, MENG Fanping, WANG Feifei, et al. Spatial distribution, source and ecological risk assessment of heavy metals in the coastal sediments of northern Dongying City [J]. Environmental Science, 2017, 38(9): 3635-3644. doi: 10.13227/j.hjkx.201701048
[49] 张亮, 叶芳, 王尽文, 等. 黄河口埕岛油田周边海域的生态环境特征及变化趋势[J]. 海洋学研究, 2015, 33(3):75-83 doi: 10.3969/j.issn.1001-909X.2015.03.011
ZHANG Liang, YE Fang, WANG Jinwen, et al. The eco-environmental characteristics and variation trends around Chengdao Oilfield Sea areas in the Yellow River Estuary [J]. Journal of Marine Sciences, 2015, 33(3): 75-83. doi: 10.3969/j.issn.1001-909X.2015.03.011
[50] 卢芳. 胜利埕岛油田海洋石油勘探开发生态环境影响研究[D]. 中国海洋大学硕士学位论文, 2010
LU Fang. Eco-environmental impact of Shengli Chengdao offshore oil exploration and development[D]. Master Dissertation of Ocean University of China, 2010.
[51] 刘金虎, 宋骏杰, 曹亮, 等. 莱州湾表层沉积物中重金属时空分布、污染来源及风险评价[J]. 生态毒理学报, 2015, 10(2):369-381 doi: 10.7524/AJE.1673-5897.20140630002
LIU Jinhu, SONG Junjie, CAO Liang, et al. Spatial and temporal distribution, sources and ecological risk assessment of heavy metals in the surface sediments of Laizhou Bay [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 369-381. doi: 10.7524/AJE.1673-5897.20140630002
[52] Huang W W, Zhang J. Effect of particle size on transition metal concentrations in the Changjiang (Yangtze River) and The Huanghe (Yellow) River, China [J]. The Science of the Total Environment, 1990, 94(3): 187-207. doi: 10.1016/0048-9697(90)90170-Y
[53] 石学法, 刘升发, 乔淑卿, 等. 中国东部近海沉积物地球化学: 分布特征、控制因素与古气候记录[J]. 矿物岩石地球化学通报, 2015, 34(5):883-894 doi: 10.3969/j.issn.1007-2802.2015.05.001
SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Geochemical Characteristics, controlling factor and record of paleoclimate in sediments from Eastern China Seas [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 883-894. doi: 10.3969/j.issn.1007-2802.2015.05.001
[54] Kang X M, Song J M, Yuan H M, et al. Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: Bioavailability, ecological risk assessment and source analysis on a centennial timescale [J]. Ecotoxicology and Environmental Safety, 2017, 143: 296-306. doi: 10.1016/j.ecoenv.2017.05.036
[55] Gao X L, Song J M, Li X G, et al. Sediment quality of the Bohai Sea and the northern Yellow Sea indicated by the results of acid-volatile sulfide and simultaneously extracted metals determinations [J]. Marine Pollution Bulletin, 2020, 155: 111147. doi: 10.1016/j.marpolbul.2020.111147
[56] Kumar A, Singhal R K, Rout S, et al. Spatial geochemical variation of major and trace elements in the marine sediments of Mumbai Harbor Bay [J]. Environmental Earth Sciences, 2013, 70(7): 3057-3066. doi: 10.1007/s12665-013-2366-3
[57] Hossen M A, Chowdhury A I H, Mullick M R A, et al. Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh [J]. Environmental Nanotechnology, Monitoring & Management, 2021, 16: 100469.
[58] 尹秀珍, 刘万洙, 蓝先洪, 等. 南黄海表层沉积物的碎屑矿物、地球化学特征及物源分析[J]. 吉林大学学报:地球科学版, 2007, 37(3):491-499
YIN Xiuzhen, LIU Wanzhu, LAN Xianhong, et al. Detrital minerals and geochemistry of the surface soft sediments and their provenance south Yellow Sea, China [J]. Journal of Jilin University:Earth Science Edition, 2007, 37(3): 491-499.
[59] 张文博. P、Ti的地球化学性质及其在深成岩中的含量与变化[J]. 世界有色金属, 2016(19):81-82
ZHANG Wenbo. The geochemical properties of phosphorus、titanium and its content in the plutonic rock and changes [J]. World Nonferrous Metals, 2016(19): 81-82.