九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素

黄威, 胡邦琦, 宋维宇, 赵京涛, 路晶芳, 孟祥君, 江云水, 崔汝勇, 丁雪. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401
引用本文: 黄威, 胡邦琦, 宋维宇, 赵京涛, 路晶芳, 孟祥君, 江云水, 崔汝勇, 丁雪. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401
HUANG Wei, HU Bangqi, SONG Weiyu, ZHAO Jingtao, LU Jingfang, MENG Xiangjun, JIANG Yunshui, CUI Ruyong, DING Xue. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401
Citation: HUANG Wei, HU Bangqi, SONG Weiyu, ZHAO Jingtao, LU Jingfang, MENG Xiangjun, JIANG Yunshui, CUI Ruyong, DING Xue. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401

九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素

  • 基金项目: 青岛海洋科学与技术试点国家实验室山东省专项经费(2021QNLM020003-2);国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局地质调查二级项目(DD20221720,DD20191010)
详细信息
    作者简介: 黄威(1981—),男,高级工程师,研究方向为海底成矿作用与物质循环,E-mail:huangw@mail. cgs.gov.cn
  • 中图分类号: P736.4

Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge

  • 铁锰结壳富集Co、Cu、Mn、Ni、Ti、V、REE、Y和Zn等关键金属,研究其富集于结壳的规律以及相关地质环境制约因素对于未来开发利用这些海底金属资源十分重要。本文对九州-帕劳海脊南部13°20′N新发现的铁锰结壳样品进行了矿物学、元素地球化学和电子探针微区分析,发现其成分较为均一,未遭受明显的磷酸盐化作用,属于单层型水生成因结壳。Co、Ni等高含量关键金属主要富集在水羟锰矿内,其中主要以晶格态形式存在的Co所经历的表面氧化还原反应是其累积富集的关键;而Ni除了与Co一样通过置换Mn或占据晶格空位而呈现富集特征外,还大量以吸附态形式存在。Ti、V和REY等通过表面络合、晶格进入以及共沉淀作用富集在以六方纤铁矿为主的铁羟基氧化物组分内。Cu、Zn的晶格进入能力不足,加之海水Cu含量偏低,Zn的弱吸附作用共同导致它们以相对低含量形式分散分布。基于Co经验公式揭示结壳的形成起始于晚中新世,未出现明显生长间断,但持续生长时间不足导致结壳的关键金属累积富集程度低于全球主要结壳成矿区。不过,研究区理想的水深条件、较低的沉积速率、稳定的构造环境、合适的最小含氧带水深分布和远离非成矿物质的大规模稀释影响,都是本区结壳未来持续性增生和进一步富集关键金属的有利条件。

  • 加载中
  • 图 1  结壳样品位置

    Figure 1. 

    图 2  结壳样品形貌特征

    Figure 2. 

    图 3  结壳样品X射线衍射图谱

    Figure 3. 

    图 4  结壳样品REY的PAAS标准化配分模式

    Figure 4. 

    图 5  结壳样品成因类型判别

    Figure 5. 

    图 6  本文研究区与全球结壳主要成矿区内样品的关键金属平均含量对比

    Figure 6. 

    表 1  结壳样品元素含量特征

    Table 1.  Chemical composition of the ferromanganese crusts

    元素外层中间层内层基质
    Al/%1.581.691.987.97
    Ca/%2.312.362.414.26
    Fe/%17.7018.7818.5211.20
    Mn/%20.6819.4418.671.35
    P/%0.230.230.220.09
    Si/%5.926.477.0121.29
    Ti/%0.941.081.030.76
    Ce/10−669276471794
    Co/10−6340032203090156
    Cu/10−61120853927373
    Ni/10−6340026202720291
    V/10−6547515491261
    Zn/10−6512463491276
    LREY/10−6123013221202173
    HREY/10−627425822960
    REY/10−6150315791431233
    下载: 导出CSV

    表 2  样品不同层位铁锰氧化物的电子探针微区成分数据

    Table 2.  Element contents in the ferromanganese oxides layers from different parts of the sample revealed in electron probe microanalysis

    元素AlCaCeCoCuFeMnNiPSiTiVZn
    外层
    (n=13)
    最大值/%1.623.040.160.730.1824.3728.611.100.453.701.320.130.10
    最小值/%0.431.620.050.240.0916.8422.980.420.302.070.640.070.05
    平均值/%0.642.470.130.590.1419.2526.810.650.362.621.160.090.08
    离散系数/%45.9816.6421.8723.6019.8910.586.0624.5812.9717.9014.8017.2917.38
    中间层
    (n=20)
    最大值/%1.222.890.160.740.2224.8132.270.820.474.931.380.120.11
    最小值/%0.342.050.090.260.0717.0122.720.400.301.591.000.070.01
    平均值/%0.672.540.130.500.1421.0626.500.580.382.921.210.100.07
    离散系数/%29.347.8814.5725.3424.5911.229.6723.0014.4826.758.9713.6633.77
    内层
    (n=20)
    最大值/%1.772.610.190.750.2035.4730.660.750.486.403.140.140.14
    最小值/%0.491.050.100.200.0816.3611.020.150.281.881.130.070.06
    平均值/%0.852.240.150.420.1323.7123.830.430.393.621.440.110.09
    离散系数/%41.4017.2216.1227.8422.6315.3415.9229.6013.7525.8329.8115.9125.82
    下载: 导出CSV

    表 3  微区铁锰氧化物纹层内各元素间的相关系数矩阵(n=53)

    Table 3.  Pearson correlation coefficient matrix for major and valuable metal elements contained in the ferromanganese oxide layers (n=53)

    AlCaCeCoCuFeMnNiPSiTiV
    Ca−0.78
    Ce0.12−0.07
    Co−0.670.57−0.21
    Cu−0.010.18−0.13−0.04
    Fe0.49−0.430.60−0.69−0.06
    Mn−0.720.67−0.410.750.06−0.90
    Ni−0.480.45−0.450.650.13−0.820.77
    P0.090.080.35−0.47−0.010.68−0.52−0.64
    Si0.78−0.640.38−0.72−0.040.87−0.94−0.760.52
    Ti0.53−0.550.53−0.37−0.040.76−0.76−0.550.180.72
    V−0.030.060.41−0.300.110.68−0.49−0.500.630.460.40
    Zn0.17−0.100.12−0.450.150.44−0.39−0.470.500.400.120.45
    下载: 导出CSV
  • [1]

    Hein J R, Koschinsky A. 13. 11 - Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.

    [2]

    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012

    [3]

    Halbach P E, Jahn A, Cherkashov G. Marine Co-Rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer, 2017: 65-141.

    [4]

    Li Y H, Schoonmaker J E. 9.1 - Chemical composition and mineralogy of marine sediments [M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 1-32.

    [5]

    White W M, Klein E M. 4.13 - Composition of the oceanic crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 457-496.

    [6]

    Mizell K, Hein J R, Au M, et al. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules [M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer, 2022: 53-80.

    [7]

    李三忠, 赵淑娟, 索艳慧, 等. 区域海底构造-上册[M]. 北京: 科学出版社, 2021.

    LI Sanzhong, ZHAO Shujian, SUO Yanhui, et al. Regional Submarine Tectonics-Volume One[M]. Beijing: Science Press, 2021.

    [8]

    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.

    [9]

    张洁, 李家彪, 丁巍伟. 九州-帕劳海脊地壳结构及其形成演化的研究综述[J]. 海洋科学进展, 2012, 30(4):595-607 doi: 10.3969/j.issn.1671-6647.2012.04.016

    ZHANG Jie, LI Jiabiao, DING Weiwei. Reviews of the study on crustal structure and evolution of the Kyushu-Palau ridge [J]. Advances in Marine Science, 2012, 30(4): 595-607. doi: 10.3969/j.issn.1671-6647.2012.04.016

    [10]

    Yamazaki T, Takahashi M, Iryu Y, et al. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores [J]. Earth, Planets and Space, 2010, 62(6): 495-502. doi: 10.5047/eps.2010.04.001

    [11]

    Party Shipboard Scientific. Initial reports of the deep sea drilling project leg 59. Part I: introduction, site reports, 2, site 447: east side of the West Philippine Basin[R]. 1981.

    [12]

    何良彪. 马里亚纳海脊-西菲律宾海盆铁锰结核的地球化学[J]. 科学通报, 1991, 36(14):1190-1193

    HE Liangbiao. Geochemical characteristics of Fe-Mn nodules and crusts from the Mariana ridge and the West Philippine Basin [J]. Chinese Science Bulletin, 1991, 36(14): 1190-1193.

    [13]

    陈穗田, Stüben D. 菲律宾海的锰结壳和锰结核[J]. 海洋学报, 1997, 19(4):109-116

    CHEN Suitian, Stüben D. Manganese crusts and nodules in the Philippine Sea [J]. Acta Oceanologica Sinica, 1997, 19(4): 109-116.

    [14]

    徐兆凯, 李安春, 于心科, 等. 东菲律宾海新型铁锰结壳中元素的赋存状态[J]. 地球科学—中国地质大学学报, 2008, 33(3):329-336 doi: 10.3799/dqkx.2008.043

    XU Zhaokai, LI Anchun, YU Xinke, et al. Elemental occurrence phases of the new-type ferromanganese crusts from the east Philippine Sea [J]. Earth Science—Journal of China University of Geosciences, 2008, 33(3): 329-336. doi: 10.3799/dqkx.2008.043

    [15]

    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean [J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    [16]

    Wegorzewski A V, Kuhn T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean [J]. Marine Geology, 2014, 357: 123-138. doi: 10.1016/j.margeo.2014.07.004

    [17]

    Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008

    [18]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [19]

    Josso P, Lusty P, Chenery S, et al. Controls on metal enrichment in ferromanganese crusts: Temporal changes in oceanic metal flux or phosphatisation? [J]. Geochimica et Cosmochimica Acta, 2021, 308: 60-74. doi: 10.1016/j.gca.2021.06.002

    [20]

    McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [21]

    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7(1): 16539. doi: 10.1038/s41598-017-16379-1

    [22]

    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    [23]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [24]

    Bonatti E, Kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. New York: Arden House, 1972.

    [25]

    黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1):199-209 doi: 10.16562/j.cnki.0256-1492.2020101501

    HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin [J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501

    [26]

    Peacock C L, Sherman D M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy [J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1723-1733. doi: 10.1016/j.gca.2003.10.018

    [27]

    Millero F J, Woosley R, Ditrolio B, et al. Effect of ocean acidification on the speciation of metals in seawater [J]. Oceanography, 2009, 22(4): 72-85. doi: 10.5670/oceanog.2009.98

    [28]

    GEOTRACES Intermediate Data Product Group. The GEOTRACES intermediate data product 2021 (IDP2021). NERC EDS British Oceanographic Data Centre NOC, 2021.

    [29]

    Bruland K W, Middag R, Lohan M C. 8.2 - controls of trace metals in seawater[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 19-51.

    [30]

    Gong G C, Liu K K, Liu C T, et al. The chemical hydrography of the South China Sea West of Luzon and a comparison with the West Philippine Sea [J]. Terrestrial, Atmospheric and Oceanic Sciences, 1992, 3(4): 587-602. doi: 10.3319/TAO.1992.3.4.587(O)

    [31]

    Behrens M K, Pahnke K, Schnetger B, et al. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific [J]. Geochimica et Cosmochimica Acta, 2018, 222: 508-534. doi: 10.1016/j.gca.2017.11.008

    [32]

    Manceau A, Drits V A, Silvester E, et al. Structural mechanism of Co2+ oxidation by the phyllomanganate buserite [J]. American Mineralogist, 1997, 82(11-12): 1150-1175. doi: 10.2138/am-1997-11-1213

    [33]

    Manceau A, Lanson M, Takahashi Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule [J]. American Mineralogist, 2014, 99(10): 2068-2083. doi: 10.2138/am-2014-4742

    [34]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 23-63.

    [35]

    Nozaki Y. A fresh look at element distribution in the North Pacific Ocean [J]. Eos, Transactions American Geophysical Union, 1997, 78(21): 221-221.

    [36]

    Hens T, Brugger J, Etschmann B, et al. Nickel exchange between aqueous Ni(II) and deep-sea ferromanganese nodules and crusts [J]. Chemical Geology, 2019, 528: 119276. doi: 10.1016/j.chemgeo.2019.119276

    [37]

    Peacock C L. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates [J]. Geochimica et Cosmochimica Acta, 2009, 73(12): 3568-3578. doi: 10.1016/j.gca.2009.03.020

    [38]

    Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules [J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    [39]

    Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments [J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012

    [40]

    Sherman D M, Peacock C L. Surface complexation of Cu on birnessite (δ-MnO2): Controls on Cu in the deep ocean [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6721-6730. doi: 10.1016/j.gca.2010.08.042

    [41]

    Little S H, Sherman D M, Vance D, et al. Molecular controls on Cu and Zn isotopic fractionation in Fe–Mn crusts [J]. Earth and Planetary Science Letters, 2014, 396: 213-222. doi: 10.1016/j.jpgl.2014.04.021

    [42]

    Yang P, Post J E, Wang Q, et al. Metal adsorption controls stability of layered manganese oxides [J]. Environmental Science & Technology, 2019, 53(13): 7453-7462.

    [43]

    Grangeon S, Manceau A, Guilhermet J, et al. Zn sorption modifies dynamically the layer and interlayer structure of vernadite [J]. Geochimica et Cosmochimica Acta, 2012, 85: 302-313. doi: 10.1016/j.gca.2012.02.019

    [44]

    Hinkle M A G, Dye K G, Catalano J G. Impact of Mn(II)-manganese oxide reactions on Ni and Zn speciation [J]. Environmental Science & Technology, 2017, 51(6): 3187-3196.

    [45]

    Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.

    [46]

    Wu F, Owens J D, Tang L M, et al. Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules [J]. Geochimica et Cosmochimica Acta, 2019, 265: 371-385. doi: 10.1016/j.gca.2019.09.007

    [47]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [48]

    Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect [J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9

    [49]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [50]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [51]

    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    [52]

    Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [53]

    Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: A composite geochemical approach [J]. Chemical Geology, 2019, 513: 108-119. doi: 10.1016/j.chemgeo.2019.03.003

    [54]

    Puteanus D, Halbach P. Correlation of Co concentration and growth rate — A method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3

    [55]

    Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    [56]

    Mcmurtry G M, Vonderhaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7

    [57]

    Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186

    [58]

    Dutkiewicz A, Müller R D, Wang X, et al. Predicting sediment thickness on vanished ocean crust since 200 Ma [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4586-4603. doi: 10.1002/2017GC007258

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1508
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2022-05-24
修回日期:  2022-06-28
录用日期:  2022-06-28
刊出日期:  2022-10-28

目录