南海深水沉积过程之大洋钻探目标

姜涛, 陈慧, 孙启良, 田冬梅, 程聪. 南海深水沉积过程之大洋钻探目标[J]. 海洋地质与第四纪地质, 2022, 42(5): 33-41. doi: 10.16562/j.cnki.0256-1492.2022062802
引用本文: 姜涛, 陈慧, 孙启良, 田冬梅, 程聪. 南海深水沉积过程之大洋钻探目标[J]. 海洋地质与第四纪地质, 2022, 42(5): 33-41. doi: 10.16562/j.cnki.0256-1492.2022062802
JIANG Tao, CHEN Hui, SUN Qiliang, TIAN Dongmei, CHENG Cong. Deep water sedimentary processes in South China Sea and proposed scientific drill targets[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 33-41. doi: 10.16562/j.cnki.0256-1492.2022062802
Citation: JIANG Tao, CHEN Hui, SUN Qiliang, TIAN Dongmei, CHENG Cong. Deep water sedimentary processes in South China Sea and proposed scientific drill targets[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 33-41. doi: 10.16562/j.cnki.0256-1492.2022062802

南海深水沉积过程之大洋钻探目标

  • 基金项目: 国家自然科学基金项目“海绵骨针释光年代学探索及其对晚更新世以来南极绕极流演化的制约”(41976073),“Naturaliste海台基底玄武岩中碳酸盐岩脉特征及其对冈瓦纳大陆裂解过程的制约”(42276073)
详细信息
    作者简介: 姜涛(1979—),男,博士,教授,博士生导师,主要从事海洋地质与资源和海洋沉积物释光测年的教学和科研工作,E-mail:taojiang@cug.edu.cn
  • 中图分类号: P736

Deep water sedimentary processes in South China Sea and proposed scientific drill targets

  • 多个航次的大洋钻探已经在南海成功实施,航次科学目标主要聚焦于古海洋、海盆形成过程以及岩石圈破裂过程等,钻遇了多种类型的深水沉积物,而且近些年来的物理海洋调查也已证实了其复杂的深水沉积动力环境,尤其是南海北部陆缘区海底地形地貌复杂,发育了深水水道、块体流等重力流沉积以及多种类型的等深流沉积。南海独特的构造环境和复杂底流活动所导致的不同深水沉积体系类型和丰富的沉积记录,使南海北部陆缘区成为研究深海沉积过程的最佳场所。通过对2—3个剖面多站位不同地形地貌条件下多类型深水沉积物的钻探对比分析,将有助于深刻理解重力流-底流相互作用特征,揭示块体流、浊流和底流形成和发育演化过程,查明岩石圈破裂和海底扩张的沉积响应等科学问题,丰富深水沉积动力学理论,深化对南海大陆边缘沉积格局演变和深层海流演变的整体性和全面性认识。

  • 加载中
  • 图 1  南海环流特征及已有大洋钻探的站位分布图[3-4,6]

    Figure 1. 

    图 2  南海北部珠江口盆地白云凹陷单向迁移峡谷地震反射特征

    Figure 2. 

    图 3  南海深水沉积过程钻探建议站位分布图

    Figure 3. 

  • [1]

    Mulder T, Zaragosi S, Garlan T, et al. Present deep-submarine canyons activity in the Bay of Biscay (NE Atlantic) [J]. Marine Geology, 2012, 295-298: 113-127. doi: 10.1016/j.margeo.2011.12.005

    [2]

    Stow D A V, Mayall M. Deep-water sedimentary systems: New models for the 21st century [J]. Marine and Petroleum Geology, 2000, 17(2): 125-135. doi: 10.1016/S0264-8172(99)00064-1

    [3]

    Li C F, Lin J, Kulhanek D K. South China Sea tectonics: opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic [J]. International Ocean Discovery Program Preliminary Report, 2014, 349: 1-111.

    [4]

    Sun Z, Jian Z, Stock J M, et al. Expedition 367 preliminary report: South China Sea rifted margin[C]//Proceedings of the International Ocean Discovery Program. College Station, 2018.

    [5]

    Wang P X, Li Q Y. Oceanographical and geological background[M]//Wang P X, Li Q Y. The South China Sea. Dordrecht: Springer, 2009, 13: 25-73.

    [6]

    Liu S, Hernández-Molina F J, Lei Z Y, et al. Fault-controlled contourite drifts in the southern South China Sea: Tectonic, oceanographic, and conceptual implications [J]. Marine Geology, 2021, 433: 106420. doi: 10.1016/j.margeo.2021.106420

    [7]

    Middleton G V, Hampton M A. Part I. Sediment gravity flows: mechanics of flow and deposition[J]. 1973.

    [8]

    Kneller B, Nasr-Azadani M M, Radhakrishnan S, et al. Long-range sediment transport in the world's oceans by stably stratified turbidity currents [J]. Journal of Geophysical Research:Oceans, 2016, 121(12): 8608-8620. doi: 10.1002/2016JC011978

    [9]

    Sun Q L, Cartwright J, Xie X N, et al. Reconstruction of repeated Quaternary slope failures in the northern South China Sea [J]. Marine Geology, 2018, 401: 17-35. doi: 10.1016/j.margeo.2018.04.009

    [10]

    Felix M, Peakall J. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments [J]. Sedimentology, 2006, 53(1): 107-123. doi: 10.1111/j.1365-3091.2005.00757.x

    [11]

    Daly R A. Origin of submarine canyons [J]. American Journal of Science, 1936, S5-31(186): 401-420. doi: 10.2475/ajs.s5-31.186.401

    [12]

    Kuenen P H. Density currents in connection with the problem of submarine canyons [J]. Geological Magazine, 1938, 75(6): 241-249. doi: 10.1017/S0016756800089627

    [13]

    Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding [J]. The Journal of Geology, 1950, 58(2): 91-127. doi: 10.1086/625710

    [14]

    Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction [J]. Annual review of fluid mechanics, 1976, 8: 275-310. doi: 10.1146/annurev.fl.08.010176.001423

    [15]

    Weimer P, Slatt R M, Bouroullec R, et al. Introduction to the Petroleum Geology of Deepwater Setting[M]. Tulsa: AAPG, 2006.

    [16]

    Normark W R. Growth patterns of Deep-Sea fans [J]. AAPG Bulletin, 1970, 54(11): 2170-2195.

    [17]

    Deptuck M E, Sylvester Z, Pirmez C, et al. Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope [J]. Marine and Petroleum Geology, 2007, 24(6-9): 406-433. doi: 10.1016/j.marpetgeo.2007.01.005

    [18]

    Twichell D C, Schwab W C, Kenyon N H. Geometry of sandy deposits at the distal edge of the Mississippi Fan, Gulf of Mexico[M]//Pickering K T, Hiscott R N, Kenyon N H, et al. Atlas of Deep Water Environments. Dordrecht: Springer, 1995: 282-286.

    [19]

    Gervais A, Savoye B, Mulder T, et al. Sandy modern turbidite lobes: A new insight from high resolution seismic data [J]. Marine and Petroleum Geology, 2006, 23(4): 485-502. doi: 10.1016/j.marpetgeo.2005.10.006

    [20]

    Lee H J, Syvitski J P M, Parker G, et al. Distinguishing sediment waves from slope failure deposits: field examples, including the 'Humboldt slide' and modelling results [J]. Marine Geology, 2002, 192(1-3): 79-104. doi: 10.1016/S0025-3227(02)00550-9

    [21]

    Khripounoff A, Vangriesheim A, Babonneau N, et al. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth [J]. Marine Geology, 2003, 194(3-4): 151-158. doi: 10.1016/S0025-3227(02)00677-1

    [22]

    Heezen B C, Ewing W M. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake [J]. American Journal of Science, 1952, 250(12): 849-873. doi: 10.2475/ajs.250.12.849

    [23]

    Pantin H M. Interaction between velocity and effective density in turbidity flow: phase-plane analysis, with criteria for autosuspension [J]. Marine Geology, 1979, 31(1-2): 59-99. doi: 10.1016/0025-3227(79)90057-4

    [24]

    Bagnold R A. Auto-suspension of transported sediment; Turbidity currents [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1962, 265(1322): 315-319.

    [25]

    Rebesco M, Hernández-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations [J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011

    [26]

    Hernández-Molina F J, Wåhlin A, Bruno M, et al. Oceanographic processes and morphosedimentary products along the Iberian margins: A new multidisciplinary approach [J]. Marine Geology, 2016, 378: 127-156. doi: 10.1016/j.margeo.2015.12.008

    [27]

    Thran A C, Dutkiewicz A, Spence P, et al. Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model [J]. Earth and Planetary Science Letters, 2018, 489: 228-240. doi: 10.1016/j.jpgl.2018.02.044

    [28]

    Vandorpe T, Van Rooij D, De Haas H. Stratigraphy and paleoceanography of a topography-controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz [J]. Marine Geology, 2014, 349: 136-151. doi: 10.1016/j.margeo.2014.01.007

    [29]

    Ribó M, Puig P, Muñoz A, et al. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean) [J]. Geomorphology, 2016, 253: 22-37. doi: 10.1016/j.geomorph.2015.09.027

    [30]

    Faugères J C, Stow D A V, Imbert P, et al. Seismic features diagnostic of contourite drifts [J]. Marine Geology, 1999, 162(1): 1-38. doi: 10.1016/S0025-3227(99)00068-7

    [31]

    Stow D A V, Faugères J, Howe J A, et al. Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art [J]. Geological Society, London, Memoirs, 2002, 22: 7-20. doi: 10.1144/GSL.MEM.2002.022.01.02

    [32]

    Marchès E, Mulder T, Cremer M, et al. Contourite drift construction influenced by capture of Mediterranean Outflow Water deep-sea current by the Portimão submarine canyon (Gulf of Cadiz, South Portugal) [J]. Marine Geology, 2007, 242(4): 247-260. doi: 10.1016/j.margeo.2007.03.013

    [33]

    Gan J P, Li H, Curchitser E N, et al. Modeling South China Sea circulation: Response to seasonal forcing regimes [J]. Journal of Geophysical Research, 2006, 111(C6): C06034.

    [34]

    王东晓, 刘雄斌, 王文质, 等. 理想海底地形的南海海洋经向翻转数值模拟[J]. 科学通报, 2004, 49(7):740-746 doi: 10.3321/j.issn:0023-074X.2004.05.014

    WANG Dongxiao, LIU Xiongbin, WANG Wenzhi, et al. Simulation of meridional overturning in the upper layer of the South China Sea with an idealized bottom topography [J]. Chinese Science Bulletin, 2004, 49(7): 740-746. doi: 10.3321/j.issn:0023-074X.2004.05.014

    [35]

    Wang G H, Xie S P, Qu T D, et al. Deep South China Sea circulation [J]. Geophysical Research Letters, 2011, 38(5): L05601.

    [36]

    Wang D X, Xiao J G, Shu Y Q, et al. Progress on deep circulation and meridional overturning circulation in the South China Sea [J]. Science China Earth Sciences, 2016, 59(9): 1827-1833. doi: 10.1007/s11430-016-5324-6

    [37]

    谢强, 肖劲根, 王东晓, 等. 基于8个准全球模式模拟的南海深层与底层环流特征分析[J]. 科学通报, 2013, 58(32):4000-4011 doi: 10.1007/s11434-013-5791-5

    XIE Qiang, XIAO Jin’gen, WANG Dongxiao, et al. Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs [J]. Chinese Science Bulletin, 2013, 58(32): 4000-4011. doi: 10.1007/s11434-013-5791-5

    [38]

    Chen G X, Wang D X, Dong C M, et al. Observed deep energetic eddies by seamount wake [J]. Scientific Reports, 2015, 5: 17416. doi: 10.1038/srep17416

    [39]

    Gong C L, Wang Y M, Zhu W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea [J]. AAPG Bulletin, 2013, 97(2): 285-308. doi: 10.1306/07121211159

    [40]

    He Y L, Xie X N, Kneller B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea [J]. Marine and Petroleum Geology, 2013, 41: 264-276. doi: 10.1016/j.marpetgeo.2012.03.002

    [41]

    Fonnesu M, Palermo D, Galbiati M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique [J]. Marine and Petroleum Geology, 2020, 111: 179-201. doi: 10.1016/j.marpetgeo.2019.07.047

    [42]

    Gong C L, Wang Y M, Rebesco M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? [J]. Geology, 2018, 46(6): 551-554. doi: 10.1130/G40204.1

    [43]

    Wang X X, Zhuo H T, Wang Y M, et al. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea [J]. Marine Geology, 2018, 406: 193-213. doi: 10.1016/j.margeo.2018.09.016

    [44]

    Mckenzie D. Some remarks on the development of sedimentary basins [J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32. doi: 10.1016/0012-821X(78)90071-7

    [45]

    Falvey D A. The development of continental margins in plate tectonic theory [J]. The APPEA Journal, 1974, 14(1): 95-106. doi: 10.1071/AJ73012

    [46]

    Moore J G, Shannon P M. Slump structures in the late Tertiary of the Porcupine Basin, offshore Ireland [J]. Marine and Petroleum Geology, 1991, 8(2): 184-197. doi: 10.1016/0264-8172(91)90006-M

    [47]

    任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1):102-114 doi: 10.13745/j.esf.2015.01.009

    REN Jianye, PANG Xiong, LEI Chao, et al. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea [J]. Earth Science Frontiers, 2015, 22(1): 102-114. doi: 10.13745/j.esf.2015.01.009

    [48]

    黄奇瑜, 闫义, 赵泉鸿, 等. 台湾新生代层序: 反映南海张裂, 层序和古海洋变化机制[J]. 科学通报, 2012, 57(24):3130-3149 doi: 10.1007/s11434-012-5349-y

    HUANG Q Y, YEN Y, ZHAO Quanhong, et al. Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea [J]. Chinese Science Bulletin, 2012, 57(24): 3130-3149. doi: 10.1007/s11434-012-5349-y

    [49]

    Soares D M, Alves T M, Terrinha P. The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic) [J]. Earth and Planetary Science Letters, 2012, 355-356: 311-326. doi: 10.1016/j.jpgl.2012.08.036

    [50]

    Stow D, Smillie Z. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites [J]. Geosciences, 2020, 10(2): 68. doi: 10.3390/geosciences10020068

    [51]

    陈慧, 解习农, 毛凯楠. 南海北缘一统暗沙附近深水等深流沉积体系特征[J]. 地球科学—中国地质大学学报, 2015, 40(4):733-743 doi: 10.3799/dqkx.2015.061

    CHEN Hui, XIE Xinong, MAO Kainan. Deep-water contourite depositional system in vicinity of Yi'tong Shoal on northern margin of the South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2015, 40(4): 733-743. doi: 10.3799/dqkx.2015.061

    [52]

    邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学D辑, 2007, 50(7):1060-1066 doi: 10.1007/s11430-007-0015-y

    SHAO Lei, LI Xuejie, GENG Jianhua, et al. Deep water bottom current deposition in the northern South China Sea [J]. Science in China Series D:Earth Sciences, 2007, 50(7): 1060-1066. doi: 10.1007/s11430-007-0015-y

    [53]

    江宁, 何敏, 刘军, 等. 东沙隆起南缘第四系等深流沉积特征及成因机制[J]. 沉积学报, 2018, 36(1):120-131

    JIANG Ning, HE Min, LIU Jun, et al. Depositional characteristics and formation mechanisms of contour current in South Dongsha uplift during the quaternary [J]. Acta Sedimentologica Sinica, 2018, 36(1): 120-131.

    [54]

    王星星, 蔡峰, 孙治雷, 等. 南海北部东沙海底峡谷沉积演化过程及其地质意义[J]. 地球科学, 2021, 46(3):1023-1037

    WANG Xingxing, CAI Feng, SUN Zhilei, et al. Sedimentary evolution and geological significance of the Dongsha submarine canyon in the northern South China Sea [J]. Earth Science, 2021, 46(3): 1023-1037.

    [55]

    Mulder T, Faugères J C, Gonthier E. Mixed turbidite-contourite systems [J]. Developments in Sedimentology, 2008, 60: 435-456.

    [56]

    王海荣, 王英民, 邱燕, 等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 2008, 26(1):39-45 doi: 10.14027/j.cnki.cjxb.2008.01.004

    WANG Hairong, WANG Yingmin, QIU Yan, et al. Development and its tectonic activity's origin of turbidity current sediment wave in Manila Trench, the South China Sea [J]. Acta Sedimentologica Sinica, 2008, 26(1): 39-45. doi: 10.14027/j.cnki.cjxb.2008.01.004

    [57]

    吴嘉鹏, 王英民, 王海荣, 等. 深水重力流与底流交互作用研究进展[J]. 地质论评, 2012, 58(6):1110-1120 doi: 10.3969/j.issn.0371-5736.2012.06.011

    WU Jiapeng, WANG Yingmin, WANG Hairong, et al. The interaction between deep-water turbidity and bottom currents: A review [J]. Geological Review, 2012, 58(6): 1110-1120. doi: 10.3969/j.issn.0371-5736.2012.06.011

  • 加载中

(3)

计量
  • 文章访问数:  1239
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2022-06-28
修回日期:  2022-08-21
录用日期:  2022-08-21
刊出日期:  2022-10-28

目录