陆坡重力流沉积地貌单元三维地震表征及其成因

李玲, 李磊, 闫华敏, 彭晨昂, 程琳燕, 高毅凡, 张威, 龚广传. 陆坡重力流沉积地貌单元三维地震表征及其成因——以琼东南盆地陵水凹陷为例[J]. 海洋地质与第四纪地质, 2023, 43(1): 37-48. doi: 10.16562/j.cnki.0256-1492.2022070702
引用本文: 李玲, 李磊, 闫华敏, 彭晨昂, 程琳燕, 高毅凡, 张威, 龚广传. 陆坡重力流沉积地貌单元三维地震表征及其成因——以琼东南盆地陵水凹陷为例[J]. 海洋地质与第四纪地质, 2023, 43(1): 37-48. doi: 10.16562/j.cnki.0256-1492.2022070702
LI Ling, LI Lei, YAN Huamin, PENG Chenang, CHENG Linyan, GAO Yifan, ZHANG Wei, GONG Guangchuan. 3D seismic characterization and origination of gravity flow geomorphic units on continental slope: A case study of Lingshui Sag, Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 37-48. doi: 10.16562/j.cnki.0256-1492.2022070702
Citation: LI Ling, LI Lei, YAN Huamin, PENG Chenang, CHENG Linyan, GAO Yifan, ZHANG Wei, GONG Guangchuan. 3D seismic characterization and origination of gravity flow geomorphic units on continental slope: A case study of Lingshui Sag, Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 37-48. doi: 10.16562/j.cnki.0256-1492.2022070702

陆坡重力流沉积地貌单元三维地震表征及其成因

  • 基金项目: 钻后储层反演和地质建模研究项目(ZX2021ZCGCF7751);西安石油大学研究生创新与实践能力培养计划(YCS22213072);西安石油大学研究生教育综合改革研究与实践项目“专业学位研究生联合培养基地建设与管理——与石油企业联合培养模式研究”(2021-X-YJG-002)
详细信息
    作者简介: 李玲(1997—),女,硕士研究生,主要从事地震解释及深水沉积研究,E-mail:1228763757@qq.com
    通讯作者: 李磊(1979—),男,博士,教授,主要从事地震地质综合解释及海洋沉积研究,E-mail:lilei@xsyu.edu.cn
  • 中图分类号: P736

3D seismic characterization and origination of gravity flow geomorphic units on continental slope: A case study of Lingshui Sag, Qiongdongnan Basin

More Information
  • 海底地貌一直是国内外学者关注的重点领域。基于琼东南盆地陵水凹陷1000 km2高分辨率三维地震资料,利用GeoFrame综合解释平台、Surfer三维成图等技术,对琼东南盆地陵水凹陷现今海底地貌进行精细刻画。研究结果表明:① 琼东南盆地下陆坡带主要发育水道(大型水道C1和冲沟-朵体复合体G1—G3)、周期阶坎以及滑坡体系3类典型地貌单元。② 水道C1宽深比31.5~232,主要由陆坡水道运输的碎屑物质冲刷而成,冲沟-朵体复合体G1—G3末端可见明显朵体发育;同时,可在水道和滑坡体系内识别到周期阶坎;研究区处于陆坡滑塌的体部-趾部区域,广泛发育挤压脊、舌状体等沉积构造。③ 推测认为研究区海底地貌主要由上陆坡滑坡引起,在物源与海平面升降的加持下,形成如今的综合型地貌。

  • 加载中
  • 图 1  研究区地理位置(a)及地貌图(b、c)[7]

    Figure 1. 

    图 2  水道C1形态变化

    Figure 2. 

    图 3  水道体系构型参数

    Figure 3. 

    图 4  冲沟-朵体复合体G1、G2、G3典型剖面

    Figure 4. 

    图 5  周期阶坎典型剖面

    Figure 5. 

    图 6  水道壁滑塌

    Figure 6. 

    图 7  滑坡地貌特征

    Figure 7. 

    图 8  研究区地貌模式图

    Figure 8. 

    表 1  常见海底地貌及特征描述

    Table 1.  Description and features of typical seafloor topography

    一级分类二级分类特征描述
    深水水道单一型水道深水水道从形态上有弯曲水道(弯曲度>1.2)和顺直水道(弯曲度<1.2)之分[8-9],是沉积物由浅海向
    深海搬运的重要通道
    分支水道分支水道常发育于海底水道的头部和趾部,似树枝状展布,总体发育规模较小[10]
    水道堤岸复合体外部形态呈“海鸥”翼状展布,由“U”型或“V”型水道和楔状堤岸组成[11]
    水道-朵体复合体头部多为单一水道或者多分支水道,末端常以朵叶状展布
    海底滑坡头部海底滑坡的头部常可识别出陡崖、滑移块体、侧壁、犁式正断层等沉积构造
    体部体部常见的特征有:滑塌褶皱、剪切槽、滑塌块体
    趾部趾部区域常能识别出逆冲断层、挤压脊、侵蚀擦痕以及外逸块体
    冲沟冲沟是常见的小尺度地貌,相当于深水沉积输送体系的“毛细血管”[12],多由高速冲刷的悬浮颗粒导致
    海底峡谷海底峡谷常呈“V”或“U”型下切,侧壁较陡,主要以侵蚀或沉积为主。深水海底峡谷是良好的油气储层,
    同时也可以记录完整的海洋地质环境变迁相关信息[13]
    海底麻坑孤立麻坑孤立麻坑表现为圆形或椭圆形,直径1~300 m[14],是由超压流体溢出海底时侵蚀
    海底沉积物所形成的一种负地形[15]
    条带状麻坑由若干个大小不一的麻坑组成的麻坑带,古水道和浅层气的逸散是形成条带状麻坑的主要因素[8,16]
    周期阶坎周期阶坎多为长波形、不对称展布,似正弦曲线多数向上游迁移,部分向下游迁移的新月形[17]
    下载: 导出CSV

    表 2  研究区内周期阶坎发育主要参数

    Table 2.  Measurements of the cyclic steps in the study area

    发育
    体系
    发育位置沉积区特征周期阶坎基本特征
    面积/km2坡度/(°)形态波长/km波高/m
    水道
    体系
    水道55.921.33长条状0.03~3.561.2~5.44
    冲沟-朵体带19.181.04叶状0.05~2.061.88~2.06
    滑坡
    体系
    西侧滑塌区87.061.41分散展布0.38~4.242.8~5.36
    东侧滑塌区157.821.12分散展布0.04~5.141.66~4.75
    下载: 导出CSV
  • [1]

    Ou X L, Zhu J J, Li S Z, et al. Submarine geomorphological features and their origins analyzed from multibeam bathymetry data in the South China Sea [J]. Journal of Marine Science and Engineering, 2021, 9(12): 1419. doi: 10.3390/jmse9121419

    [2]

    Posamentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings [J]. Journal of Sedimentary Research, 2003, 73(3): 367-388. doi: 10.1306/111302730367

    [3]

    Francis J M, Daniell J J, Droxler A W, et al. Deep water geomorphology of the mixed siliciclastic-carbonate system, Gulf of Papua [J]. Journal of Geophysical Research:Earth Surface, 2008, 113(F1): F01S16.

    [4]

    Hogan K A, Dowdeswell J A, Noormets R, et al. Submarine landforms and ice-sheet flow in the Kvitøya Trough, northwestern Barents Sea [J]. Quaternary Science Reviews, 2010, 29(25-26): 3545-3562. doi: 10.1016/j.quascirev.2010.08.015

    [5]

    Serié C, Huuse M, Schødt N H, et al. Subsurface fluid flow in the deep-water Kwanza Basin, offshore Angola [J]. Basin Research, 2017, 29(2): 149-179. doi: 10.1111/bre.12169

    [6]

    罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6):42-50

    LUO Jinhua, ZHU Peimin. Gravity induced deposits in the continental slope of Qiongdongnan Basin based on ultrahigh resolution AUV data [J]. Geological Science and Technology Information, 2019, 38(6): 42-50.

    [7]

    朱友生, 王艳秋, 冯湘子, 等. 琼东南盆地陵水17-2深水气田开发区表层沉积物类型及工程地质特性[J]. 海洋地质与第四纪地质, 2022, 42(1):45-56

    ZHU Yousheng, WANG Yanqiu, FENG Xiangzi, et al. Surface sediments and their geotechnical characteristics in the development area of deepwater gas field LS17-2 [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 45-56.

    [8]

    李磊, 李志军, 闫瑞, 等. Rio Muni盆地第四纪陆坡地震地貌学[J]. 沉积学报, 2014, 32(3):485-493

    LI Lei, LI Zhijun, YAN Rui, et al. Seismic geomorphology of Quaternary continental slope in Rio Muni Basin [J]. Acta Sedimentologica Sinica, 2014, 32(3): 485-493.

    [9]

    尚文亮, 徐少华, 李小刚, 等. 浅述深水水道的形态学特征[J]. 地质找矿论丛, 2020, 35(2):204-209

    SHANG Wenliang, XU Shaohua, LI Xiaogang, et al. Brief introduction to morphological characteristics of deep-water channels [J]. Contributions to Geology and Mineral Resources Research, 2020, 35(2): 204-209.

    [10]

    李华, 何幼斌, 谈梦婷, 等. 深水重力流水道-朵叶体系形成演化及储层分布: 以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例[J]. 石油与天然气地质, 2022, 43(4):917-928

    LI Hua, HE Youbin, TAN Mengting, et al. Evolution of and reservoir distribution within deep-water gravity flow channel-lobe system: a case study of the Ordovician Lashenzhong Formation outcrop at western margin of Ordos Basin [J]. Oil & Gas Geology, 2022, 43(4): 917-928.

    [11]

    陈亮, 赵千慧, 王英民, 等. 深水水道沉积单元及演化分析[J]. 海洋地质前沿, 2020, 36(3):12-19

    CHEN Liang, ZHAO Qianhui, WANG Yingmin, et al. Depositional elements of deepwater channels and their evolution [J]. Marine Geology Frontiers, 2020, 36(3): 12-19.

    [12]

    王大伟, 曾凡长, 王微微, 等. 海底冲沟: 深水沉积输运系统的“毛细血管”[J]. 地球科学进展, 2022, 37(4):331-343

    WANG Dawei, ZENG Fanchang, WANG Weiwei, et al. Submarine gullies: the capillary of deep-water sediment transport system [J]. Advances in Earth Science, 2022, 37(4): 331-343.

    [13]

    杜文波, 聂鑫, 杨楚鹏, 等. 南海北部珠江口外峡谷体系沉积特征、演化及其控制因素[J]. 地球科学, 2022, doi:10.3799/dqkx.2022.166.

    DU Wenbo, NIE Xin, YANG Chupeng, et al. Sedimentary characteristics, evolution and controlling factors of the Pearl River canyon system in the northern South China Sea[J]. Earth Science, 2022, doi:10.3799/dqkx.2022.166.

    [14]

    杨志鹏, 李磊, 张威, 等. 海底麻坑表征及成因研究: 以尼日尔三角洲为例[J]. 海洋地质与第四纪地质, 2020, 40(6):61-70

    YANG Zhipeng, LI Lei, ZHANG Wei, et al. Characteristics and genesis of submarine pockmarks: a case from the Niger Delta [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 61-70.

    [15]

    沈奥, 孙启良, 蔡砥柱, 等. 海底麻坑的特征、分类与成因机制[J/OL]. 地质科技通报, 2022: 1-14. [2022-10-04]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.19509/j.cnki.dzkq.2022.0144.

    SHEN Ao, SUN Qiliang, CAI Dizhu, et al. Characteristics, classification and genetic mechanism of pockmarks[J/OL]. Bulletin of Geological Science and Technology, 2022: 1-14. [2022-10-04]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.19509/j.cnki.dzkq.2022.0144.

    [16]

    李磊, 裴都, 都鹏燕, 等. 海底麻坑的构型、特征、演化及成因: 以西非木尼河盆地陆坡为例[J]. 海相油气地质, 2013, 18(4):53-58

    LI Lei, PEI Du, DU Pengyan, et al. Architecture, character, evolution and genesis of seabed pockmarks: a case study to the continental slope in Rio Muni Basin, West Africa [J]. Marine Origin Petroleum Geology, 2013, 18(4): 53-58.

    [17]

    程琳燕, 李磊, 高毅凡, 等. 琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(1):37-44

    CHENG Linyan, LI Lei, GAO Yifan, et al. The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin [J]. Marine Geology & Quaternary Geology, 2022, 42(1): 37-44.

    [18]

    赵蒙维. 琼东南盆地新生代古海洋环境演变[D]. 中国海洋大学硕士学位论文, 2013.

    ZHAO Mengwei. Evolution of paleoenvironment in Qiong-Dongnan Basin during Cenozoic[D]. Master Dissertation of Ocean University of China, 2013.

    [19]

    康波. 琼东南盆地新生代沉降—热演化模拟[D]. 中国地质大学博士学位论文, 2014.

    KANG Bo. Cenozoic subsidence and thermal history modelling of Qiongdongnan Basin[D]. Doctor Dissertation of China University of Geosciences, 2014.

    [20]

    姚根顺, 袁圣强, 吴时国, 等. 琼东南盆地深水区双物源沉积模式及勘探前景[J]. 石油勘探与开发, 2008, 35(6):685-691 doi: 10.1016/S1876-3804(09)60101-4

    YAO Genshun, YUAN Shengqiang, WU Shiguo, et al. Double provenance depositional model and exploration prospect in deepwater area of Qiongdongnan Basin [J]. Petroleum Exploration and Development, 2008, 35(6): 685-691. doi: 10.1016/S1876-3804(09)60101-4

    [21]

    曾小明, 潘燕, 于佳, 等. 陵水凹陷北坡低密度浊流海底扇沉积特征[J]. 科学技术与工程, 2015, 15(33):48-53,78

    ZENG Xiaoming, PAN Yan, YU Jia, et al. Low-density turbidity submarine fan sedimentary characteristics in north slope of Lingshui Sag [J]. Science Technology and Engineering, 2015, 15(33): 48-53,78.

    [22]

    何家雄, 陈胜红, 马文宏, 等. 南海北部大陆边缘盆地深水油气成藏条件早期预测与评价[J]. 天然气地球科学, 2008, 19(6):780-789

    HE Jiaxiong, CHEN Shenghong, MA Wenhong, et al. Early forecast and evaluation on petroleum accumulation conditions in deep basin in northern continental margin of the South China Sea [J]. Natural Gas Geoscience, 2008, 19(6): 780-789.

    [23]

    冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5):25-35

    FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35.

    [24]

    Mosher D, Bigg S, LaPierre A. 3D seismic versus multibeam sonar seafloor surface renderings for geohazard assessment: case examples from the central Scotian Slope [J]. The Leading Edge, 2006, 25(12): 1484-1494. doi: 10.1190/1.2405334

    [25]

    Meng M M, Liang J Q, Kuang Z G, et al. Distribution characteristics of Quaternary channel systems and their controlling factors in the Qiongdongnan Basin, South China Sea [J]. Frontiers in Earth Science, 2022, 10: 902517. doi: 10.3389/feart.2022.902517

    [26]

    陈昱瑶, 周江羽, 钟佳, 等. 南海西北缘深水水道体系的地震响应及其演化[J]. 海洋地质与第四纪地质, 2014, 34(2):69-78

    CHEN Yuyao, ZHOU Jiangyu, ZHONG Jia, et al. Seismic characteristics of deepwater channel system in northwestern margin of South China Sea and its evolution [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 69-78.

    [27]

    姚悦, 周江羽, 雷振宇, 等. 西沙海槽盆地强限制性中央峡谷水道地震相与内部结构的分段特征[J]. 沉积学报, 2018, 36(4):787-795

    YAO Yue, ZHOU Jiangyu, LEI Zhenyu, et al. High restriction seismic facies and inner structural segmentation features of the central canyon channel systems in Xisha Trough Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 787-795.

    [28]

    李爽, 李伟, 詹文欢. 南海东北部陆缘浊流活动的地貌记录及其形成机制分析[J]. 热带海洋学报, 2021, 40(1):111-121

    LI Shuang, LI Wei, ZHAN Wenhuan. Geomorphological records of turbidity current activity in the northeastern margin of the South China Sea and analysis of triggering mechanism [J]. Journal of Tropical Oceanography, 2021, 40(1): 111-121.

    [29]

    Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows [J]. Marine Geology, 2016, 371: 130-148. doi: 10.1016/j.margeo.2015.11.009

    [30]

    李全, 林畅松, 盖海洋, 等. 西非科特迪瓦盆地深水底形样式及成因分析[J]. 沉积学报, 2022, DOI: 10.14027/j.issn.1000-0550.2022.045.

    LI Quan, LIN Changsong, GAI Haiyang, et al. Deep-water bedform patterns and genesis in the Cote D’ Ivoire Basin, west Africa[J]. Acta Sedimentologica Sinica, 2022, DOI: 10.14027/j.issn.1000-0550.2022.045.

    [31]

    Masson D G, Huggett Q J, Brunsden D. The surface texture of the Saharan debris flow deposit and some speculations on submarine debris flow processes [J]. Sedimentology, 1993, 40(3): 583-598. doi: 10.1111/j.1365-3091.1993.tb01351.x

    [32]

    Frey-Martínez J, Cartwright J, James D. Frontally confined versus frontally emergent submarine landslides: a 3D seismic characterisation [J]. Marine and Petroleum Geology, 2006, 23(5): 585-604. doi: 10.1016/j.marpetgeo.2006.04.002

    [33]

    何云龙, 解习农, 李俊良, 等. 琼东南盆地陆坡体系发育特征及其控制因素[J]. 地质科技情报, 2010, 29(2):118-122

    HE Yunlong, XIE Xinong, LI Junliang, et al. Depositional characteristics and controlling factors of continental slope system in the Qiongdongnan Basin [J]. Geological Science and Technology Information, 2010, 29(2): 118-122.

    [34]

    杜浩, 石万忠, 梁金强, 等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探, 2021, 56(4):869-881

    DU Hao, SHI Wanzhong, LIANG Jinqiang, et al. Genesis of mass transport deposits and their effect on gas hydrate accumulation in the Qiongdongnan Basin [J]. Oil Geophysical Prospecting, 2021, 56(4): 869-881.

    [35]

    黄维, 汪品先. 南海沉积物总量的统计: 方法与结果[J]. 地球科学进展, 2006, 21(5):465-473

    HUANG Wei, WANG Pinxian. The statistics of sediment mass in the South China Sea: method and result [J]. Advances in Earth Science, 2006, 21(5): 465-473.

    [36]

    马畅, 葛家旺, 赵晓明, 等. 南海北部琼东南盆地第四系陆架边缘轨迹迁移及深水沉积模式[J]. 地学前缘, 2022, 29(4):55-72

    MA Chang, GE Jiawang, ZHAO Xiaoming, et al. Quaternary Qiongdongnan Basin in South China Sea: shelf-edge trajectory migration and deep-water depositional models [J]. Earth Science Frontiers, 2022, 29(4): 55-72.

    [37]

    王菲, 吴艳梅, 丁巍伟. 南海西北与西南次海盆沉积通量及其控制因素[J]. 地球科学, 2021, 46(3):986-1007

    WANG Fei, WU Yanmei, DING Weiwei. Sedimentary budget and controlling factors of the northwest and southwest sub-basins, the South China Sea [J]. Earth Science, 2021, 46(3): 986-1007.

    [38]

    邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征[J]. 石油学报, 2010, 31(4):548-552 doi: 10.7623/syxb201004005

    SHAO Lei, LI Ang, WU Guoxuan, et al. Evolution of sedimentary environment and provenance in Qiongdongnan Basin in the northern South China Sea [J]. Acta Petrolei Sinica, 2010, 31(4): 548-552. doi: 10.7623/syxb201004005

    [39]

    Shi X B, Kohn B, Spencer S, et al. Cenozoic denudation history of southern Hainan Island, South China Sea: constraints from low temperature thermochronology [J]. Tectonophysics, 2011, 504(1-4): 100-115. doi: 10.1016/j.tecto.2011.03.007

    [40]

    Clift P D, Sun Z. The sedimentary and tectonic evolution of the Yinggehai–Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B6): B06405.

    [41]

    龚再升, 谢泰俊, 张启民, 等. 南海北部大陆边缘盆地分析及油气聚集[R]. 保定: 中国海洋石油勘探开发研究中心, 2002.

    GONG Zaisheng, XIE Taijun, ZHANG Qimin, et al. Analysis of continental- margin basins and hydrocarbon accumulation in the northern South China Sea[R]. Baoding: China Offshore Oil Exploration and Development Research Center, 2002.

    [42]

    Smith D E, Harrison S, Jordan J T. Sea level rise and submarine mass failures on open continental margins [J]. Quaternary Science Reviews, 2013, 82: 93-103. doi: 10.1016/j.quascirev.2013.10.012

    [43]

    Tian J, Zhao Q H, Wang P X, et al. Astronomically modulated Neogene sediment records from the South China Sea [J]. Paleoceanography, 2008, 23(3): PA3210.

    [44]

    龚承林, 齐昆, 徐杰, 等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报, 2021, 39(1):231-252

    GONG Chenglin, QI Kun, XU Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes [J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252.

    [45]

    Peltier W R. On eustatic sea level history: Last Glacial maximum to Holocene [J]. Quaternary Science Reviews, 2002, 21(1-3): 377-396. doi: 10.1016/S0277-3791(01)00084-1

    [46]

    马云, 李三忠, 梁金强, 等. 南海北部琼东南盆地海底滑坡特征及其成因机制[J]. 吉林大学学报:地球科学版, 2012, 42(S3):196-205

    MA Yun, LI Sanzhong, LIANG Jinqiang, et al. Characteristics and mechanism of submarine landslides in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Jilin University:Earth Science Edition, 2012, 42(S3): 196-205.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1629
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2022-07-07
修回日期:  2022-10-05
录用日期:  2022-10-05
刊出日期:  2023-02-28

目录