海山俯冲对希库朗伊增生楔构造变形的影响:基于离散元模拟的认识

王明, 王毛毛, 郭仔佚. 海山俯冲对希库朗伊增生楔构造变形的影响:基于离散元模拟的认识[J]. 海洋地质与第四纪地质, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801
引用本文: 王明, 王毛毛, 郭仔佚. 海山俯冲对希库朗伊增生楔构造变形的影响:基于离散元模拟的认识[J]. 海洋地质与第四纪地质, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801
WANG Ming, WANG Maomao, GUO Ziyi. Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801
Citation: WANG Ming, WANG Maomao, GUO Ziyi. Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 82-93. doi: 10.16562/j.cnki.0256-1492.2022090801

海山俯冲对希库朗伊增生楔构造变形的影响:基于离散元模拟的认识

  • 基金项目: 国家重点研发计划(重大自然灾害防控与公共安全)“构建三维公共断层模型和四维构造动态演化模型”(2021YFC3000604);国家自然科学基金面上项目“四川盆地南部高应变构造变形与诱发地震的相关性研究”(42172232)
详细信息
    作者简介: 王明(1997—),女,硕士研究生,主要从事俯冲带构造变形研究,E-mail:wangming@hhu.edu.cn
    通讯作者: 王毛毛(1985—),男,副教授,主要从事俯冲带构造和活动构造研究,E-mail:wangmm@hhu.edu.cn
  • 中图分类号: P736.1

Effects of seamount subduction on structural deformation of Hikurangi accretionary wedge: Insights from discrete-element modeling

More Information
  • 海山等粗糙海底的俯冲对增生楔的结构、地貌、应力和地震灾害有着重要的影响。希库朗伊(Hikurangi)俯冲带位于新西兰北岛外海,希库朗伊高原向西正以40~47 mm/a的速率俯冲于澳大利亚板块之下。希库朗伊高原内部发育大量形态各异的海山,其俯冲造成希库朗伊北缘经历了严重的构造侵蚀。目前该区域的慢滑移事件有了很好的地震学和测地学约束,但对于希库朗伊北缘的构造侵蚀和构造应力体制如何演化以及对地震活动的影响仍然不清。本文基于离散元方法(DEM)数值模拟,结合地震反射剖面,探讨了海山俯冲对希库朗伊俯冲带北缘增生楔的形态、断裂结构、活动性、应变分配的影响。模拟结果显示海山的俯冲在其顶部形成一条巨型分支断层(mega-splay fault),吸收主要的缩短量并沿海底发生长距离、低角度逆冲推覆。随着俯冲的持续,海山前缘形成一个双重构造剪切带,而随着滑脱层的下移并向前扩展,最终形成前缘逆冲断裂体系。模拟证实海山俯冲提高了弧前增生楔内应力分布的非均质性,海山前缘最大剪切应力显著累积,而海山后缘则表现为一个稳定的应力影区。海山俯冲显著增加了希库朗伊俯冲带板间逆冲断层的几何粗糙度和物质非均质性,对微地震和慢滑移事件的产生具有重要影响。

  • 加载中
  • 图 1  南太平洋希库朗伊(Hikurangi)俯冲带北缘构造背景

    Figure 1. 

    图 2  希库朗伊俯冲带存在的两种可能的“海山模型”[34]

    Figure 2. 

    图 3  希库朗伊俯冲带北缘地震反射剖面05CM-04的构造解释[17]

    Figure 3. 

    图 4  本文采用的离散元数值模拟实验模型设置

    Figure 4. 

    图 5  楔体构造变形与应变的演化

    Figure 5. 

    图 6  楔体表面坡角(A)与楔体宽度(B)随缩短量变化统计图

    Figure 6. 

    图 7  楔体内部断层位移量与缩短量统计

    Figure 7. 

    图 8  光滑海底(A)与海山俯冲(B)模型中楔体最大剪切应力(τmax)分布对比

    Figure 8. 

    图 9  海山俯冲过程中的增生楔内部断裂演化的三阶段模式图

    Figure 9. 

    图 10  DEM数值模拟结果与希库朗伊俯冲带构造剖面对比

    Figure 10. 

    表 1  离散元数值模拟参数设置 [36]

    Table 1.  Model parameters of the discrete-element numerical simulation[36]

    单元宏观参数岩层颗粒间的黏结参数
    内聚力
    /MPa
    内摩擦角
    /(°)
    摩擦系数μ弹性模量/MPa剪切模量/MPa抗拉强度/MPa剪切强度/MPa
    μ124.422.50.32.0×1082.0×1083.0×1076.0×107
    μ224.422.50.12.0×1082.0×1083.0×1076.0×107
    上覆地层24.422.50.32.0×1082.0×1083.0×1076.0×107
    下载: 导出CSV
  • [1]

    Cloos M. Thrust-type subduction-zone earthquakes and seamount asperities: a physical model for seismic rupture [J]. Geology, 1992, 20(7): 601-604. doi: 10.1130/0091-7613(1992)020<0601:TTSZEA>2.3.CO;2

    [2]

    Scholz C H, Small C. The effect of seamount subduction on seismic coupling [J]. Geology, 1997, 25(6): 487-490. doi: 10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2

    [3]

    Dominguez S, Lallemand S E, Malavieille J, et al. Upper plate deformation associated with seamount subduction [J]. Tectonophysics, 1998, 293(3-4): 207-224. doi: 10.1016/S0040-1951(98)00086-9

    [4]

    Wang K L, Bilek S L. Do subducting seamounts generate or stop large earthquakes? [J]. Geology, 2011, 39(9): 819-822. doi: 10.1130/G31856.1

    [5]

    Tao J L, Dai L M, Lou D, et al. Accretion of oceanic plateaus at continental margins: numerical modeling [J]. Gondwana Research, 2020, 81: 390-402. doi: 10.1016/j.gr.2019.11.015

    [6]

    Dai L M, Wang L L, Lou D, et al. Slab rollback versus delamination: contrasting fates of flat‐slab subduction and implications for South China evolution in the Mesozoic [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB019164.

    [7]

    Wang L L, Dai L M, Gong W, et al. Subduction initiation at the Solomon back-arc basin: Contributions from both island arc rheological strength and oceanic plateau collision [J]. Geophysical Research Letters, 2020, 49(3): e2021GL093369.

    [8]

    Dominguez S, Malavieille J, Lallemand S E. Deformation of accretionary wedges in response to seamount subduction: insights from sandbox experiments [J]. Tectonics, 2000, 19(1): 182-196. doi: 10.1029/1999TC900055

    [9]

    Liu Z, Dai L M, Li S Z, et al. When plateau meets subduction zone: a review of numerical models [J]. Earth-Science Reviews, 2021, 215: 103556. doi: 10.1016/j.earscirev.2021.103556

    [10]

    Baba T, Hori T, Hirano S, et al. Deformation of a seamount subducting beneath an accretionary prism: constraints from numerical simulation [J]. Geophysical Research Letters, 2001, 28(9): 1827-1830. doi: 10.1029/2000GL012266

    [11]

    Bangs N L B, Gulick S P S, Shipley T H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone [J]. Geology, 2006, 34(8): 701-704. doi: 10.1130/G22451.1

    [12]

    Strasser M, Moore G F, Kimura G, et al. Origin and evolution of a splay fault in the Nankai accretionary wedge [J]. Nature Geoscience, 2009, 2(9): 648-652. doi: 10.1038/ngeo609

    [13]

    Cole J W, Lewis K B. Evolution of the Taupo-Hikurangi subduction system [J]. Tectonophysics, 1981, 72(1-2): 1-21. doi: 10.1016/0040-1951(81)90084-6

    [14]

    Davy B, Hoernle K, Werner R. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07004.

    [15]

    Lewis K B. The 1500-km-long Hikurangi Channel: trench-axis channel that escapes its trench, crosses a plateau, and feeds a fan drift [J]. Geo-Marine Letters, 1994, 14(1): 19-28. doi: 10.1007/BF01204467

    [16]

    Taylor B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 372-380. doi: 10.1016/j.jpgl.2005.11.049

    [17]

    Barnes P M, Wallace L M, Saffer D M, et al. Slow slip source characterized by lithological and geometric heterogeneity [J]. Science Advances, 2020, 6(13): eaay3314. doi: 10.1126/sciadv.aay3314

    [18]

    Barnes P M, Lamarche G, Bialas J, et al. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand [J]. Marine Geology, 2010, 272(1-4): 26-48. doi: 10.1016/j.margeo.2009.03.012

    [19]

    Collot J Y, Lewis K, Lamarche G, et al. The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: result of oblique seamount subduction [J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B9): 19271-19297. doi: 10.1029/2001JB900004

    [20]

    Lewis K B, Collot J Y, Lallem S E. The dammed Hikurangi Trough: a channel‐fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project) [J]. Basin Research, 1998, 10(4): 441-468. doi: 10.1046/j.1365-2117.1998.00080.x

    [21]

    Lewis K B, Lallemand S E, Carter L. Collapse in a Quaternary shelf basin off East Cape, New Zealand: evidence for passage of a subducted seamount inboard of the Ruatoria giant avalanche [J]. New Zealand Journal of Geology and Geophysics, 2004, 47(3): 415-429. doi: 10.1080/00288306.2004.9515067

    [22]

    Wallace L M, Beavan J, Bannister S, et al. Simultaneous long‐term and short‐term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration [J]. Journal of Geophysical Research:Solid Earth, 2012, 117(B11): B11402.

    [23]

    Wang K L, Bilek S L. Invited review paper: fault creep caused by subduction of rough seafloor relief [J]. Tectonophysics, 2014, 610: 1-24. doi: 10.1016/j.tecto.2013.11.024

    [24]

    Barker D H N, Henrys S, Caratori Tontini F, et al. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand [J]. Geophysical Research Letters, 2018, 45(23): 12804-12813.

    [25]

    Bassett D, Watts A B. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(5): 1508-1540. doi: 10.1002/2014GC005684

    [26]

    Bell R, Holden C, Power W, et al. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount [J]. Earth and Planetary Science Letters, 2014, 397: 1-9. doi: 10.1016/j.jpgl.2014.04.005

    [27]

    Sun T H Z, Saffer D, Ellis S. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip [J]. Nature Geoscience, 2020, 13(3): 249-255. doi: 10.1038/s41561-020-0542-0

    [28]

    Wallace L M, Beavan J, McCaffrey R, et al. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12406. doi: 10.1029/2004JB003241

    [29]

    Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349

    [30]

    Chesley C, Naif S, Key K, et al. Fluid-rich subducting topography generates anomalous forearc porosity [J]. Nature, 2021, 595(7866): 255-260. doi: 10.1038/s41586-021-03619-8

    [31]

    Fagereng Å, Savage H M, Morgan J K, et al. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand [J]. Geology, 2019, 47(9): 872-876. doi: 10.1130/G46367.1

    [32]

    Gray M, Bell R E, Morgan J V, et al. Imaging the shallow subsurface structure of the North Hikurangi Subduction Zone, New Zealand, using 2‐D full‐waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(8): 9049-9074. doi: 10.1029/2019JB017793

    [33]

    Wallace L M, Saffer D M, Barnes P M, et al. Hikurangi subduction margin coring, logging, and observatories [J]. Proceedings of the International Ocean Discovery Program, 2019: 372B/375.

    [34]

    Arai R, Kodaira S, Henrys S, et al. Three‐dimensional P wave velocity structure of the Northern Hikurangi margin from the NZ3D experiment: evidence for fault‐bound anisotropy [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(12): e2020JB020433.

    [35]

    Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29(1): 47-65.

    [36]

    Morgan J K. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: discrete element simulations [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(5): 3870-3896. doi: 10.1002/2014JB011455

    [37]

    Mortimer N, Parkinson D. Hikurangi Plateau: a cretaceous large igneous province in the Southwest Pacific Ocean [J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B1): 687-696. doi: 10.1029/95JB03037

    [38]

    Barker D H N, Sutherland R, Henrys S, et al. Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(2): Q02007.

    [39]

    Dutilleul J, Bourlange S, Géraud Y. Porosity and compaction state at the active Pāpaku thrust fault in the frontal accretionary wedge of the North Hikurangi margin [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(10): e2020GC009325.

    [40]

    Savage H M, Shreedharan S, Fagereng Å, et al. Asymmetric brittle deformation at the Pāpaku Fault, Hikurangi Subduction Margin, NZ, IODP expedition 375 [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(8): e2021GC009662.

    [41]

    Dean S L, Morgan J K, Fournier T. Geometries of frontal fold and thrust belts: Insights from discrete element simulations [J]. Journal of Structural Geology, 2013, 53: 43-53. doi: 10.1016/j.jsg.2013.05.008

    [42]

    Ellis S, Schreurs G, Panien M. Comparisons between analogue and numerical models of thrust wedge development [J]. Journal of Structural Geology, 2004, 26(9): 1659-1675. doi: 10.1016/j.jsg.2004.02.012

    [43]

    Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges [J]. Marine and Petroleum Geology, 2009, 26(2): 232-248. doi: 10.1016/j.marpetgeo.2007.12.003

    [44]

    Morgan J K, Bangs N L. Recognizing seamount-forearc collisions at accretionary margins: Insights from discrete numerical simulations [J]. Geology, 2017, 45(7): 635-638. doi: 10.1130/G38923.1

    [45]

    Saffer D M, Underwood M B, McKiernan A W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: application to the Nankai Trough [J]. Island Arc, 2008, 17(2): 208-230. doi: 10.1111/j.1440-1738.2008.00614.x

    [46]

    Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events [J]. Geophysical Journal International, 2010, 180(1): 34-48. doi: 10.1111/j.1365-246X.2009.04401.x

    [47]

    Watson S J, Mountjoy J J, Barnes P M, et al. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand [J]. Geology, 2020, 48(1): 56-61. doi: 10.1130/G46666.1

    [48]

    Dahlen F A, Barr T D. Brittle frictional mountain building: 1. deformation and mechanical energy budget [J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B4): 3906-3922. doi: 10.1029/JB094iB04p03906

    [49]

    Moore G F, Bangs N L, Taira A, et al. Three-dimensional splay fault geometry and implications for tsunami generation [J]. Science, 2007, 318(5853): 1128-1131. doi: 10.1126/science.1147195

    [50]

    Doser D I, Webb T H. Source parameters of large historical (1917-1961) earthquakes, North Island, New Zealand [J]. Geophysical Journal International, 2003, 152(3): 795-832. doi: 10.1046/j.1365-246X.2003.01895.x

    [51]

    Kimura G, Moore G F, Strasser M, et al. Spatial and temporal evolution of the megasplay fault in the Nankai Trough [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0A008.

    [52]

    von Huene R, Miller J J, Klaeschen D, et al. A possible source mechanism of the 1946 Unimak Alaska far-field tsunami: Uplift of the mid-slope terrace above a splay fault zone [J]. Pure and Applied Geophysics, 2016, 173(12): 4189-4201. doi: 10.1007/s00024-016-1393-x

    [53]

    von Huene R, Miller J J, Krabbenhoeft A. The Alaska convergent margin backstop splay fault zone, a potential large tsunami generator between the frontal prism and continental framework [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2019GC008901.

    [54]

    Morgan J K, Solomon E A, Fagereng A, et al. Seafloor overthrusting causes ductile fault deformation and fault sealing along the Northern Hikurangi Margin [J]. Earth and Planetary Science Letters, 2022, 593: 117651. doi: 10.1016/j.jpgl.2022.117651

    [55]

    Calvert A J. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone [J]. Nature, 2004, 428(6979): 163-167. doi: 10.1038/nature02372

    [56]

    Nedimović M R, Hyndman R D, Ramachandran K, et al. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface [J]. Nature, 2003, 424(6947): 416-420. doi: 10.1038/nature01840

  • 加载中

(10)

(1)

计量
  • 文章访问数:  2133
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2022-09-08
修回日期:  2022-10-26
录用日期:  2022-10-26
刊出日期:  2023-02-28

目录