中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球化学的影响

王世奇, 叶现韬, 张传林, 石学法. 中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球化学的影响[J]. 海洋地质与第四纪地质, 2024, 44(1): 67-80. doi: 10.16562/j.cnki.0256-1492.2022111401
引用本文: 王世奇, 叶现韬, 张传林, 石学法. 中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球化学的影响[J]. 海洋地质与第四纪地质, 2024, 44(1): 67-80. doi: 10.16562/j.cnki.0256-1492.2022111401
WANG Shiqi, YE Xiantao, ZHANG Chuanlin, SHI Xuefa. Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 67-80. doi: 10.16562/j.cnki.0256-1492.2022111401
Citation: WANG Shiqi, YE Xiantao, ZHANG Chuanlin, SHI Xuefa. Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 67-80. doi: 10.16562/j.cnki.0256-1492.2022111401

中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球化学的影响

  • 基金项目: 国家自然科学基金项目“中太平洋海山群玄武岩的成因与源区特征”(42176093);青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室开放基金项目“中太平洋海山区玄武岩年代学和地球化学特征:对海山成因和演化的启示”(MGONLM-KF201817)
详细信息
    作者简介: 王世奇(1996—),男,硕士研究生,从事岩浆岩石学与矿物学研究,E-mail:250269383@qq.com
    通讯作者: 叶现韬(1987—),男,博士,副教授,从事岩浆岩石学研究,E-mail:yexiantao@hhu.edu.cn
  • 中图分类号: P736

Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains

More Information
  • 大洋玄武岩是研究地幔不均一性、岩浆起源与演化的重要对象。然而,由于其长期与周围的海水相互作用,极易发生蚀变和次生变化。磷酸盐化是大洋玄武岩最常见的次生变化之一,会影响到其全岩地球化学成分,且目前仍没有去除磷酸盐化的有效方法。因此,研究磷酸盐化特征以及评估其对玄武岩全岩地球化学成分的影响至关重要。本文以中太平洋海山群(九皋和紫檀海山)玄武岩为研究对象,通过能谱面扫描元素分布图、主量元素以及微量元素揭示玄武岩的磷酸盐化特征,评估磷酸盐化对其全岩主微量元素的影响。面扫描元素分布图显示,中太平洋海山群玄武岩的磷酸盐化作用主要发生在玄武岩气孔和裂隙周围,以交代早期的碳酸盐化基质,形成细小的磷酸盐矿物,呈浸染状分布在玄武岩基质中为特点,并且磷酸盐化会不同程度地改变玄武岩的主量元素和微量元素成分:比如磷酸盐化会使玄武岩的MgO、CaO、Na2O、MnO含量降低,K2O和Fe2O3T含量升高,同时也会对相容元素(如Cr、Co、Ni等)、大离子亲石元素(Rb、Ba、Cs等)和稀土元素造成不同程度的影响。值得注意的是,在磷酸盐化过程中,玄武岩的Al2O3、SiO2和高场强元素(Nb、Ta、Zr、Hf和Ti)几乎不受影响。

  • 加载中
  • 图 1  中太平洋海山群地理位置与地形图

    Figure 1. 

    图 2  海山地形图

    Figure 2. 

    图 3  海山玄武岩镜下照片(正交偏光)

    Figure 3. 

    图 4  九皋和紫檀玄武岩 SiO2-Zr/TiO2地球化学判别图

    Figure 4. 

    图 5  九皋和紫檀玄武岩球粒陨石标准化稀土元素模式图

    Figure 5. 

    图 6  九皋玄武岩气孔周围能谱面扫描元素含量分布图

    Figure 6. 

    图 7  九皋玄武岩裂隙周围能谱面扫描元素含量分布图

    Figure 7. 

    图 8  P2O5与烧失量(a)及δCe(b)相关图解

    Figure 8. 

    图 9  九皋和紫檀玄武岩 δY 与主量元素相关图

    Figure 9. 

    图 10  九皋和紫檀玄武岩 δY 与微量元素关系图

    Figure 10. 

    图 11  九皋和紫檀玄武岩Zr与Hf、Nb、Ta和Ti含量关系图

    Figure 11. 

    表 1  九皋和紫檀海山玄武岩主量元素地球化学数据

    Table 1.  Major elements of the Jiugao and Zitan basalts %

    海山样品编号SiO2TiO2Al2O3Fe2O3TMnOMgOCaONa2OK2OP2O5LOISUM
    九皋
    海山
    CWD16-1.149.802.2917.7512.770.072.913.161.311.950.577.43100.01
    CWD16-1.247.942.3217.8911.400.192.425.181.552.061.477.1099.51
    CWD16-1.348.162.3117.3612.650.093.184.491.592.250.516.8099.38
    CWD16-1.446.902.4618.8512.760.103.536.201.511.390.476.09100.27
    CWD16-1.548.782.3417.7913.300.093.043.901.231.870.607.29100.23
    CWD16-1.648.672.3918.2912.210.113.053.751.422.060.327.1899.46
    CWD16-2.147.562.4318.1513.610.072.343.141.081.880.718.3999.36
    CWD16-2.248.852.4317.2114.190.042.502.941.012.420.527.8799.98
    CWD16-2.448.292.4618.5811.490.193.356.261.631.290.385.9499.84
    CWD16-2.546.022.4216.7313.230.145.228.101.110.950.355.76100.03
    CWD16-2.645.922.6218.9013.510.092.084.931.471.471.007.3399.30
    CWD10-2②47.811.3415.1312.570.107.587.981.880.820.084.5899.87
    CWD10-347.751.2815.3013.050.107.417.261.841.060.134.5999.75
    紫檀
    海山
    CWD12-1①51.031.3015.2014.190.022.884.881.863.570.414.79100.13
    CWD12-251.081.6217.8511.650.062.426.582.632.010.093.4199.39
    CWD12-3②50.461.5717.1712.750.072.516.892.532.120.093.2999.44
    下载: 导出CSV

    表 2  九皋和紫檀玄武岩微量元素地球化学数据

    Table 2.  Trace elements of the Jiugao and Zitan basalts

    海山样品编号ScVCrCoNiGaRbSrYZrNbCsBaLaCePrNdSmEu
    九皋海山CWD16-1.124.91033191010418.450.862764.128663.62.3156755.158.99.9340.37.542.31
    CWD16-1.221.511832125.918018.545.376310928865.81.6107011764.913.4549.212.78
    CWD16-1.326.713535920.313518.147.978266.330564.31.5668865.461.911.747.68.762.67
    CWD16-1.428.121235024.111317.934.97354432069.11.3960147.164.29.739.17.552.4
    CWD16-1.524.411133014.710218.148.563859.429966.12.0451755.363.210.542.37.952.45
    CWD16-1.625.415633522.612418.543.270443.431468.51.4357946.160.29.38387.252.26
    CWD16-2.124.8912638.182.917.45555383.929965.72.5542875.653.511.546.98.132.44
    CWD16-2.224.91203265.6757.614.456.949910732967.72.3742797.352.617.974.613.73.92
    CWD16-2.426.615935624.914617.431.175852.131466.31.3162752.765.610.241.37.792.48
    CWD16-2.527.624325832.212118.421.561946.329163.30.8641142.461.38.86367.042.24
    CWD16-2.623.517537216.180.116.137.776981.333271.41.3565773.668.313.253.69.752.93
    紫檀海山CWD10-2②30.522041844.133717.330.214118.774.27.522.6241.96.159.381.728.322.220.842
    CWD10-329.318749544.529717.337.914222.871.47.133.2743.58.899.611.949.212.380.87
    CWD12-1①22.76725610.683.216.795.422861.19312.64.1313443.812.56.5128.65.411.59
    CWD12-230.116218629.513620.25622416.397.713.62.891057.2511.71.687.741.910.79
    CWD12-3②3117118524.2992061.222118.49713.43.0299.8812.81.999.222.280.875
    海山样品编号GdTbDyHoErTmYbLuHfTaPbThUδEuδCeδY(La/Sm)N∑REE



    CWD16-1.18.481.257.561.674.780.714.420.7165.923.6810.94.981.150.880.611.384.6203.67
    CWD16-1.211.21.569.522.166.150.885.320.8635.893.8316.64.951.040.840.391.847.99298.94
    CWD16-1.39.731.418.281.764.880.7144.40.6966.23.8913.75.211.040.880.541.334.7229.9
    CWD16-1.47.751.176.881.434.010.6023.810.66.524.0912.15.470.940.960.721.073.92196.3
    CWD16-1.58.71.297.651.664.750.714.450.7276.123.82205.060.960.90.631.274.38211.64
    CWD16-1.67.491.116.421.333.670.5353.330.5226.434.0317.75.40.840.940.71.134187.6
    CWD16-2.19.821.398.391.935.450.7914.840.7926.243.8515.24.871.120.830.441.595.85231.47
    CWD16-2.215.92.2613.42.887.951.146.841.086.453.9119.55.531.190.810.31.324.47311.47
    CWD16-2.48.221.217.071.494.110.5993.720.5926.474.0714.75.20.670.950.681.234.26207.08
    CWD16-2.57.381.126.541.393.870.5763.630.586.123.77.74.670.570.950.761.173.79182.93
    CWD16-2.610.91.599.582.15.930.875.350.8496.834.3713.75.561.350.870.531.384.75258.55



    CWD10-2②2.850.482.960.6311.770.2611.610.2461.90.4751.030.3580.161.020.691.051.7439.44
    CWD10-33.10.5143.20.6991.940.2851.780.2741.830.4520.9430.3740.180.980.561.162.3544.69
    CWD12-1①7.020.9825.941.333.680.5173.040.4792.010.7529.070.670.420.790.181.665.09121.4
    CWD12-22.320.3912.40.5261.490.2231.40.2162.390.8151.610.590.391.150.811.112.3940.04
    CWD12-3②2.790.4692.890.611.70.251.540.2372.360.7761.380.6180.31.060.771.062.2145.65
    注:微量元素单位为10-6;δEu= EuN/(SmN × GdN)0.5,δCe= CeN/(LaN × PrN)0.5,δY=YN/(DyN × HoN)0.5
    下载: 导出CSV
  • [1]

    White W M. Isotopes, DUPAL, LLSVPs, and Anekantavada [J]. Chemical Geology, 2015, 419: 10-28. doi: 10.1016/j.chemgeo.2015.09.026

    [2]

    White W M, Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution [J]. Nature, 1982, 296(5860): 821-825. doi: 10.1038/296821a0

    [3]

    Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    [4]

    卜文瑞, 石学法, 彭建堂, 等. 大洋岛屿玄武岩低温蚀变作用及其对大洋过渡金属循环的贡献[J]. 海洋学报, 2007, 29(5):55-68

    BU Wenrui, SHI Xuefa, PENG Jiantang, et al. Low-temperature alteration of oceanic island basalts and their contribution to transition metal cycle of the ocean [J]. Acta Oceanologica Sinica, 2007, 29(5): 55-68.

    [5]

    卜文瑞, 李力, 朱爱美, 等. 海底蚀变玄武岩中次生组分去除实验研究[J]. 地球科学进展, 2012, 27(10):1167-1172

    BU Wenrui, LI Li, ZHU Aimei, et al. Leaching experiments of secondary components in altered submarine basalts [J]. Advances in Earth Science, 2012, 27(10): 1167-1172.

    [6]

    Guy C, Daux V, Schott J. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif [J]. Chemical Geology, 1999, 158(1-2): 21-35. doi: 10.1016/S0009-2541(99)00019-4

    [7]

    Alt J C, Teagle D A H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 [J]. Chemical Geology, 2003, 201(3-4): 191-211. doi: 10.1016/S0009-2541(03)00201-8

    [8]

    陈建林, 马维林, 高水土, 等. 中太平洋结壳区海山燧石岩成因研究[J]. 海洋学报, 2003, 25(3):53-58

    CHEN Jianlin, MA Weilin, GAO Shuitu, et al. Genetic study on flint from the crust area of the central Pacific Ocean mountains [J]. Acta Oceanologica Sinica, 2003, 25(3): 53-58.

    [9]

    陈建林, 马维林, 武光海, 等. 中太平洋海山富钴结壳与基岩关系的研究[J]. 海洋学报(中文版), 2004, 26(4):71-79

    CHEN Jianlin, MA Weilin, WU Guanghai, et al. Research on the relationships between cobalt-rich crusts and substrate rocks in the Mid-Pacific Mountains [J]. Acta Oceanologica Sinica, 2004, 26(4): 71-79.

    [10]

    初凤友, 陈建林, 马维林, 等. 中太平洋海山玄武岩的岩石学特征与年代[J]. 海洋地质与第四纪地质, 2005, 25(4):55-59 doi: 10.16562/j.cnki.0256-1492.2005.04.010

    CHU Fengyou, CHEN Jianlin, MA Weilin, et al. Petrologic characteristics and ages of basalt in Middle Pacific Mountains [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 55-59. doi: 10.16562/j.cnki.0256-1492.2005.04.010

    [11]

    Melson W G, Thompson G. Glassy abyssal basalts, Atlantic sea floor near St. Paul's Rocks: petrography and composition of secondary clay minerals [J]. Geological Society of America Bulletin, 1973, 84(2): 703-716. doi: 10.1130/0016-7606(1973)84<703:GABASF>2.0.CO;2

    [12]

    Thompson G. A geochemical study of the low-temperature interaction of seawater and oceanic igneous rocks [J]. Transactions-American Geophysical Union, 1973, 54: 1015-1019.

    [13]

    鄢全树, 张平阳, 石学法, 等. 海底熔岩风化作用及其地质意义[J]. 海洋科学进展, 2017, 35(3):369-381

    YAN Quanshu, ZHANG Pingyang, SHI Xuefa, et al. Weathering of seafloor lavas and its geological significance [J]. Advances in Marine Science, 2017, 35(3): 369-381.

    [14]

    Koppers A A P, Staudigel H, Pringle M S, et al. Short‐lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1089.

    [15]

    Corliss J B. The origin of metal‐bearing submarine hydrothermal solutions [J]. Journal of Geophysical Research, 1971, 76(33): 8128-8138. doi: 10.1029/JC076i033p08128

    [16]

    Hart S R. K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts [J]. Earth and Planetary Science Letters, 1969, 6(4): 295-303. doi: 10.1016/0012-821X(69)90171-X

    [17]

    Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions[M]//Floyd P A. Oceanic Basalts. Dordrecht: Springer, 1991: 148-173.

    [18]

    刘晖, 卢正权, 梅燕雄, 等. 海洋磷块岩形成环境与资源分布[J]. 海洋地质与第四纪地质, 2014, 34(3):49-56

    LIU Hui, LU Zhengquan, MEI Yanxiong, et al. Depositional environment and world distribution of marine phosphorites [J]. Marine Geology & Quaternary Geology, 2014, 34(3): 49-56.

    [19]

    王吉中. 磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D]. 中国地质大学(北京)博士学位论文, 2005

    WANG Jizhong. Effects of phosphatization on composition of Co-rich crusts on central pacific seamounts[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2005.

    [20]

    李江山, 石学法, 刘季花, 等. 西太平洋富钴结壳中磷酸盐化的制约因素探讨[J]. 矿物学报, 2011, 31(S1):693-694 doi: 10.16461/j.cnki.1000-4734.2011.s1.465

    LI Jiangshan, SHI Xuefa, LIU Jihua, et al. Restriction factors of phosphorylation in cobalt-rich crusts in the Western Pacific Ocean [J]. Acta Mineralogica Sinica, 2011, 31(S1): 693-694. doi: 10.16461/j.cnki.1000-4734.2011.s1.465

    [21]

    崔迎春, 石学法, 刘季花, 等. 磷酸盐化作用对富钴结壳元素相关性的影响[J]. 地质科技情报, 2008, 27(3):61-67

    CUI Yingchun, SHI Xuefa, LIU Jihua, et al. Effects of phosphatization on the elemental association of cobalt-rich crusts [J]. Bulletin of Geological Science and Technology, 2008, 27(3): 61-67.

    [22]

    刘家岐, 兰晓东. 中太平洋莱恩海山富钴结壳元素地球化学特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(2):81-91

    LIU Jiaqi, LAN Xiaodong. Element geochemistry and genesis of cobalt-rich crust on the Line Seamount of the Central Pacific [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 81-91.

    [23]

    任向文, 刘季花, 石学法, 等. 西太平洋Lamont海山中新世以来富钴结壳成矿环境的演化[J]. 海洋科学进展, 2006, 24(1):17-29

    REN Xiangwen, LIU Jihua, SHI Xuefa, et al. Evolution of ore-forming condition of Co-rich crusts from Lamont Guyot in the western Pacific since the Miocene [J]. Advances in Marine Science, 2006, 24(1): 17-29.

    [24]

    Hein J R, Koschinsk A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2017: 239-279.

    [25]

    Ji L H, Liu G S, Huang Y P, et al. The distribution of iodine and effects of phosphatization on it in the ferromanganese crusts from the Mid-Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 34(8): 13-19. doi: 10.1007/s13131-015-0704-x

    [26]

    Nishi K, Usui A, Nakasato Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts [J]. Ore Geology Reviews, 2017, 87: 62-70. doi: 10.1016/j.oregeorev.2016.09.004

    [27]

    Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000, 162(2-4): 541-559. doi: 10.1016/S0025-3227(99)00091-2

    [28]

    潘家华, 刘淑琴, Decarlo E. 大洋磷酸盐化作用对富钴结壳元素富集的影响[J]. 地球学报, 2002, 23(5):403-407

    PAN Jiahua, LIU Shuqin, Decarlo E. The effects of marine phospharization on element concentration of Cobalt-rich crusts [J]. Acta Geoscientia Sinica, 2002, 23(5): 403-407.

    [29]

    武光海, 周怀阳, 凌洪飞, 等. 富钴结壳中的磷酸盐岩及其古环境指示意义[J]. 矿物学报, 2005, 25(1):39-44 doi: 10.16461/j.cnki.1000-4734.2005.01.007

    WU Guanghai, ZHOU Huaiyang, LING Hongfei, et al. Phosphorites in Co-rich crusts and their palaeooceanographic singificance [J]. Acta Mineralogica Sinica, 2005, 25(1): 39-44. doi: 10.16461/j.cnki.1000-4734.2005.01.007

    [30]

    王洋, 方念乔. 多金属结壳生长间断期与磷酸盐化事件的关系[J]. 海洋学报, 2021, 43(1):102-109 doi: 10.12284/hyxb2021017

    WANG Yang, FANG Nianqiao. The relationship between the growth discontinuity of polymetallic crusts and phosphatization events [J]. Acta Oceanologica Sinica, 2021, 43(1): 102-109. doi: 10.12284/hyxb2021017

    [31]

    朱佛宏. 太平洋海山玄武岩的磷酸盐化[J]. 海洋地质动态, 1988(7):9-10

    ZHU Fohong. Phosphatization of Pacific seamount basalts [J]. Marine Geology Frontiers, 1988(7): 9-10.

    [32]

    朱克超. 麦哲伦海山区MA、MC、MD、ME、MF海山结壳基岩的岩石学[J]. 海洋地质与第四纪地质, 2002, 22(1):49-56 doi: 10.16562/j.cnki.0256-1492.2002.01.008

    ZHU Kechao. Petrology of the substrate in seamounts MA, MC, MD, ME and MF from Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2002, 22(1): 49-56. doi: 10.16562/j.cnki.0256-1492.2002.01.008

    [33]

    潘家华, 刘淑琴, 杨忆, 等. 太平洋水下海山磷酸盐的成因及形成环境[J]. 地球学报, 2004, 25(4):453-458

    PAN Jiahua, LIU Shuqin, YANG Yi, et al. The origin and formation environment of phosphates on submarine guyots of the Pacific ocean [J]. Acta Geoscientica Sinica, 2004, 25(4): 453-458.

    [34]

    汪在聪, 李胜荣, 刘鑫, 等. 中太平洋WX海山富钴结壳磷酸盐矿物学研究及成因类型分析[J]. 岩石矿物学杂志, 2007, 26(5):441-448

    WANG Zaicong, LI Shengrong, LIU Xin, et al. A mineralogical study and genetic analysis of phosphate in Co-rich crusts from the Central Pacific WX seamount [J]. Acta Petrologica et Mineralogica, 2007, 26(5): 441-448.

    [35]

    Kellogg J N, Ogujiofor I J. Gravity field analysis of Sio Guyot: An isostatically compensated seamount in the Mid-Pacific Mountains [J]. Geo-Marine Letters, 1985, 5(2): 91-97. doi: 10.1007/BF02233933

    [36]

    Nemoto K, Kroenke L W. Sio Guyot: a complex volcanic edifice in the western Mid-Pacific Mountains [J]. Geo-Marine Letters, 1985, 5(2): 83-89. doi: 10.1007/BF02233932

    [37]

    Kroenke L W, Kellogg J N, Nemoto K. Mid-Pacific Mountains revisited [J]. Geo-Marine Letters, 1985, 5(2): 77-81. doi: 10.1007/BF02233931

    [38]

    Wilson P A, Jenkyns H C, Elderfield H, et al. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots [J]. Nature, 1998, 392(6679): 889-894. doi: 10.1038/31865

    [39]

    Thiede J, Dean W E, Rea D K, et al. The geologic history of the Mid-Pacific Mountains in the central North Pacific Ocean; a synthesis of deep-sea drilling studies [J]. Initial Reports of the Deep Sea Drilling Project, 1981, 62: 1073-1120.

    [40]

    Hamilton E L. Sunken Islands of the Mid-Pacific Mountains[M]. New York: Geological Society of America, 1956.

    [41]

    Winterer E L, Metzler C V. Origin and subsidence of Guyots in Mid‐Pacific Mountains [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9969-9979. doi: 10.1029/JB089iB12p09969

    [42]

    Larson R L, Chase C G. Late Mesozoic evolution of the western Pacific Ocean [J]. Geological Society of America Bulletin, 1972, 83(12): 3627-3644. doi: 10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2

    [43]

    Ozima M, Honda M, Saito K. 40Ar-39Ar ages of guyots in the western Pacific and discussion of their evolution [J]. Geophysical Journal of the Royal Astronomical Society, 1977, 51(2): 475-485. doi: 10.1111/j.1365-246X.1977.tb06930.x

    [44]

    Pringle M S, Duncan R A. Radiometric ages of basaltic lavas recovered at Sites 865, 866, and 869: Northwest Pacific atolls and guyots[C]//Proceedings of the Ocean Drilling Program. Scientific results. 1995, 142: 277-283.

    [45]

    Winterer E L, Natland J H, Van Waasbergen R J, et al. Cretaceous guyots in the northwest Pacific: An overview of their geology and geophysics[M]//Pringle M S, Sager W W, Sliter W V, et al. The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Washington: American Geophysical Union, 1993, 77: 307-334.

    [46]

    Larson R L, Moberly R, Lancelot Y. Initial Reports of the Deep Sea Drilling Project 32[M]. Washington: U. S. Government Printing Office, 1975.

    [47]

    Larson R L, Lancelot Y, Gardner J V. Magnetic, bathymetric, seismic reflection, and positioning data collected underway on Glomar Challenger, Leg 32[M]//Larson R L, Moberly R. Initial Reports of the Deep Sea Drilling Project 32. Washington: U. S. Government Printing Office, 1975: 393-427.

    [48]

    Baker P E, Castillo P R, Condliffe E. Petrology and geochemistry of igneous rocks from Allison and Resolution guyots, Sites 865 and 866: Northwest Pacific atolls and guyots[C]//Proceedings of the Ocean Drilling Program. Scientific Results. 1995, 142: 245-261.

    [49]

    何欣, 孙国胜, 初凤友, 等. 中太平洋CA海山玄武岩中斜长石化学成分特征及地质意义[J]. 海洋学研究, 2017, 35(2):23-32

    HE Xin, SUN Guosheng, CHU Fengyou, et al. Chemical characteristics and geological implication of plagioclase in CA Seamount basalts from the Middle Pacific [J]. Journal of Marine Sciences, 2017, 35(2): 23-32.

    [50]

    Chen S S, Liu J Q. Geochemical characteristics and geological significance of Cretaceous phonotephrite from the Mid-Pacific Mountains [J]. Science China Earth Sciences, 2018, 61(6): 745-764. doi: 10.1007/s11430-017-9172-4

    [51]

    中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录-2016[M]. 北京: 海洋出版社, 2016

    China Ocean Mineral Resources Research and Development Association Office. Chinese Gazetteer of Undersea Features on the International Seabed, 2016[M]. Beijing: China Ocean Press, 2016.

    [52]

    Li X H, Sun M, Wei G J, et al. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: evidence for an extremely depleted mantle in the Paleoproterozoic [J]. Precambrian Research, 2000, 102(3-4): 251-262. doi: 10.1016/S0301-9268(00)00067-X

    [53]

    Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta, 2000, 51(3): 507-513. doi: 10.1016/S0039-9140(99)00318-5

    [54]

    Gurenko A A, Hoernle K A, Hauff F, et al. Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes [J]. Chemical Geology, 2006, 233(1-2): 75-112. doi: 10.1016/j.chemgeo.2006.02.016

    [55]

    苏蓉. 中太平洋CNW海山玄武岩岩石地球化学特征及对富钴结壳生长的影响[D]. 吉林大学硕士学位论文, 2015

    SU Rong. Geochemical characteristics of basalt and effect of cobalt-rich crusts growth in the Mid-Pacific CNW Seamount[D]. Master Dissertation of Jilin University, 2015.

    [56]

    李超. 中太平洋CH海山玄武岩地球化学特征及富钴结壳成因[D]. 吉林大学硕士学位论文, 2013

    LI Chao. Geochemical characteristics of basalt and research on Co-rich crust formation in the Mid-Pacific CH Seamount[D]. Master Dissertation of Jilin University, 2013.

    [57]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [58]

    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114.

    [59]

    Wei X, Zhang Y, Shi X F, et al. Co-occurrence of HIMU and EM1 components in a single Magellan seamount: implications for the formation of west pacific seamount province [J]. Journal of Petrology, 2022, 63(4): egac022. doi: 10.1093/petrology/egac022

    [60]

    任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院研究生院博士学位论文, 2005

    REN Xiangwen. The metallogenic system of Co-rich manganese crusts in Western Pacific[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2005.

    [61]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [62]

    刘佳辉, 曲扬, 李伟强, 等. 西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义[J]. 海洋地质与第四纪地质, 2022, 42(2):36-45 doi: 10.16562/j.cnki.0256-1492.2021052701

    LIU Jiahui, QU Yang, LI Weiqiang, et al. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 36-45. doi: 10.16562/j.cnki.0256-1492.2021052701

    [63]

    Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1209
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2022-11-14
修回日期:  2023-01-18
录用日期:  2023-01-18
刊出日期:  2024-02-28

目录