福建琅岐岛表土孢粉与植硅体组合对农业活动的指示

刘茜, 曾剑威, 王继龙, 戴璐, 于俊杰. 福建琅岐岛表土孢粉与植硅体组合对农业活动的指示[J]. 海洋地质与第四纪地质, 2024, 44(1): 55-66. doi: 10.16562/j.cnki.0256-1492.2022123101
引用本文: 刘茜, 曾剑威, 王继龙, 戴璐, 于俊杰. 福建琅岐岛表土孢粉与植硅体组合对农业活动的指示[J]. 海洋地质与第四纪地质, 2024, 44(1): 55-66. doi: 10.16562/j.cnki.0256-1492.2022123101
LIU Qian, ZENG Jianwei, WANG Jilong, DAI Lu, YU Junjie. Pollen and phytolith assemblages in topsoil as indicators of agricultural activities in Langqi Island, Fujian Province[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 55-66. doi: 10.16562/j.cnki.0256-1492.2022123101
Citation: LIU Qian, ZENG Jianwei, WANG Jilong, DAI Lu, YU Junjie. Pollen and phytolith assemblages in topsoil as indicators of agricultural activities in Langqi Island, Fujian Province[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 55-66. doi: 10.16562/j.cnki.0256-1492.2022123101

福建琅岐岛表土孢粉与植硅体组合对农业活动的指示

  • 基金项目: 中国地质调查局南京地质调查中心项目“长江下游及东南沿海生态地质调查”(DD20221778)
详细信息
    作者简介: 刘茜(1999—),女,硕士研究生,海岸海洋地理学专业,E-mail:1596658360@qq.com
    通讯作者: 戴璐(1981—),男,副教授,研究方向为第四纪孢粉学,E-mail:dailu2288@163.com 于俊杰(1983—),男,高级工程师,研究方向为海岸带与第四纪地质学,E-mail:25320701@qq.com
  • 中图分类号: P532

Pollen and phytolith assemblages in topsoil as indicators of agricultural activities in Langqi Island, Fujian Province

More Information
  • 孢粉和植硅体是重建古人类农业景观及环境变化的重要指标,明确它们在表土中的分布规律及其与现代植被组成之间的关系对于精确解释化石孢粉和植硅体数据具有重要的意义。本研究对福建琅岐岛3种土地利用类型的22个表土样品进行了孢粉与植硅体分析,基于地理信息系统和遥感技术,展示了不同类型孢粉百分比的空间分布及其与植被覆盖度间的数量对应关系。孢粉分析表明,以松属(Pinus)为代表的外来花粉普遍存在于表土样品中,这削弱了采样点周围植物的孢粉表现力,导致了果园和农田植被组成与表土孢粉组合间的巨大差异。与此同时,农业收割活动进一步降低了农田植物的花粉表现力。从遥感影像中提取的植被覆盖度数据仅与荒地上的木本植物花粉含量存在较强的相关性(R2=0.7764),这显示茂密的草本植物降低了外来木本花粉的相对含量,证明了该植被类型具有良好的孢粉表现力。植硅体分析表明,表土样品含有丰富的竹亚科(Bambusoideae)、水稻(Oryza sativa)和杂草的植硅体。与孢粉指标相比,植硅体提供了更丰富的草本植物信息。

  • 加载中
  • 图 1  福建琅岐岛地理位置(a)及植被覆盖度(b)

    Figure 1. 

    图 2  福建琅岐岛表土孢粉含量

    Figure 2. 

    图 3  福建琅岐岛表土植硅体形态

    Figure 3. 

    图 4  福建琅岐岛表土植硅体百分比图

    Figure 4. 

    图 5  福建琅岐岛不同类型禾本科植硅体百分比

    Figure 5. 

    图 6  3种土地利用类型孢粉含量对比(a)和聚类分析结果(b)

    Figure 6. 

    图 7  表土松属花粉(a)和不包含松属的木本花粉(b)的空间分布

    Figure 7. 

    图 8  三种土地利用类型的主要花粉与植被覆盖度间的回归分析

    Figure 8. 

    表 1  采样点位置与周边植物以及植被覆盖度

    Table 1.  Location of samples, surrounding plants, and FVC

    编号采样点土地利用类型位置海拔/m主要植物种类植被覆盖度
    FJLQ01棕榈林地1人工林、果园26.1158°N、119.5803°E4棕榈、桉树0.502 961
    FJLQ02厚皮菜地农田26.1161°N、119.5731°E4枇杷、樟科、厚皮菜、莴笋、芭蕉、
    禾本科杂草
    0.529 258
    FJLQ03干涸鱼塘荒地26.1253°N、119.5864°E3芭蕉、禾本科杂草0.065 274
    FJLQ04白菜菜地1农田26.1186°N、119.605°E5桉树、白菜、橙子0.543 917
    FJLQ05荒地荒地26.12°N、119.6167°E2禾本科、菊科野草0.357 109
    FJLQ06龙眼果园人工林、果园26.1103°N、119.6164°E8龙眼、枫香属、棕榈、禾本科野草0.491 367
    FJLQ07水稻田农田26.1042°N、119.6228°E5水稻、桉树0.613 628
    FJLQ08芦苇荡荒地26.1097°N、119.6333°E3芦苇、禾本科杂草0.518 772
    FJLQ10弃耕水稻田荒地26.0939°N、119.6267°E4水稻、禾本科杂草0.469 033
    FJLQ11花椰菜菜地1农田26.0911°N、119.6319°E4花椰菜、禾本科杂草0.491 376
    FJLQ14棕榈林地2人工林、果园26.0672°N、119.6081°E5菊科藜科野草、棕榈科刺葵林、雅榕林0.732 174
    FJLQ15白菜菜地2农田26.0792°N、119.6092°E3白菜、红薯、豌豆0.460 017
    FJLQ16枣树果园人工林、果园26.0844°N、119.6125°E4枣树、橘子0.475 803
    FJLQ17撂荒地1荒地26.0856°N、119.6036°E6禾本科、菊科、蒿属野草0.617 381
    FJLQ18撂荒地2荒地26.0806°N、119.5906°E4栎属、鹅耳枥属、禾本科、菊科、芭蕉、旋花科0.547 991
    FJLQ19无花果果园人工林、果园26.0775°N、119.5783°E3无花果、柚子树、甘蔗、杨桃0.427 494
    FJLQ20枯树林人工林、果园26.0669°N、119.5878°E4枯树、枫香林、菊科、禾本科、蕨类植物0.696 931
    FJLQ21大花田菁林地人工林、果园26.0728°N、119.565°E3大花田菁、蓝花楹、香桃木、芭蕉、柳树0.569 948
    FJLQ22撂荒地3荒地26.0922°N、119.5581°E3菊科、禾本科、乌桕、芦苇、白菜、红薯0.511 86
    FJLQ23橘子、火龙果果园人工林、果园26.0881°N、119.5669°E10火龙果、橘子、豌豆、芭蕉、红薯、甘蔗0.580 022
    FJLQ24橘子果园人工林、果园26.0933°N、119.5844°E10橘子、芋头、花椰菜、芭蕉、桉树、木麻黄0.381 408
    FJLQ25花椰菜菜地2农田26.0978°N、119.5992°E3花椰菜、芭蕉、榕树、台湾相思树0.609 647
    下载: 导出CSV

    表 2  禾本科植硅体的分类

    Table 2.  Classification of Poaceae phytolith

    禾本科特有植硅体类型及划分依据
    稻亚科扇型、双裂片型[12]
    竹亚科扇型、鞍型[12]
    早熟禾亚科帽型、圆齿边型[12,22]
    黍亚科、芦竹亚科、
    画眉草亚科
    扇型、鞍型、双裂片型、十字型、
    多裂片型[12]
    水稻水稻扇型[12-13,28-29]图3-24,25)、
    并排哑铃型[12]图3-30)
    麦类树突拉长型[12,30-32]
    下载: 导出CSV
  • [1]

    Bunting M J, Farrell M, Bayliss A, et al. Maps from mud—using the multiple scenario approach to reconstruct land cover dynamics from pollen records: a case study of two Neolithic landscapes [J]. Frontiers in Ecology and Evolution, 2018, 6: 36. doi: 10.3389/fevo.2018.00036

    [2]

    Caseldine C, Fyfe R, Hjelle K. Pollen modelling, palaeoecology and archaeology: virtualisation and/or visualisation of the past? [J]. Vegetation History and Archaeobotany, 2008, 17(5): 543-549. doi: 10.1007/s00334-007-0093-y

    [3]

    Xu Q H, Cao X Y, Tian F, et al. Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction [J]. Science China Earth Sciences, 2014, 57(6): 1254-1266. doi: 10.1007/s11430-013-4738-7

    [4]

    Richer S, Gearey B. From Rackham to REVEALS: reflections on palaeoecological approaches to woodland and trees [J]. Environmental Archaeology, 2018, 23(3): 286-297. doi: 10.1080/14614103.2017.1283765

    [5]

    Farrell M, Bunting M J, Sturt F, et al. Opening the woods: towards a quantification of Neolithic clearance around the Somerset Levels and Moors [J]. Journal of Archaeological Method and Theory, 2020, 27(2): 271-301. doi: 10.1007/s10816-019-09427-9

    [6]

    Kurmann M H. An opal phytolith and palynomorph study of extant and fossil soils in Kansas (U. S. A. ) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 49(3-4): 217-235. doi: 10.1016/0031-0182(85)90055-0

    [7]

    Horrocks M, Deng Y, Ogden J, et al. A reconstruction of the history of a Holocene sand dune on Great Barrier Island, northern New Zealand, using pollen and phytolith analyses [J]. Journal of Biogeography, 2000, 27(6): 1269-1277. doi: 10.1046/j.1365-2699.2000.00508.x

    [8]

    Huang F, Lisa K, Xiong S F, et al. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia [J]. Science in China Series D, 2005, 48(7): 1025-1039. doi: 10.1360/03yd0165

    [9]

    葛勇. 长白山西麓哈尼泥炭地全新世植硅体与孢粉信息记录的古环境重建[D]. 东北师范大学硕士学位论文, 2012

    GE Yong. Holocene paleoenvironment reconstruction by using pollen and phytolith records in Hanni peatland[D]. Master Dissertation of Northeast Normal University, 2012.

    [10]

    杜凯闯, 王文静, 吴克宁, 等. 河南仰韶村遗址原始农业活动研究[J]. 土壤, 2018, 50(4):832-840

    DU Kaichuang, WANG Wenjing, WU Kening, et al. Study on primitive agricultural activities of Yangshao village cultural site in Henan province [J]. Soils, 2018, 50(4): 832-840.

    [11]

    张峻凡, 范保硕, 陈伟, 等. 唐代正定古城址形成时期的环境背景与人类活动[J]. 第四纪研究, 2021, 41(5):1489-1502

    ZHANG Junfan, FAN Baoshuo, CHEN Wei, et al. The environmental background and human activities for Zhengding ancient city site in Tang Dynasty [J]. Quaternary Sciences, 2021, 41(5): 1489-1502.

    [12]

    王永吉, 吕厚远. 植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1993

    WANG Yongji, LÜ Houyuan. Research and Application of Phyllosilicate[M]. Beijing: Ocean Press, 1993.

    [13]

    吕厚远, 吴乃琴, 王永吉. 水稻扇型硅酸体的鉴定及在考古学中的应用[J]. 考古, 1996(4):82-86

    LÜ Houyuan, WU Naiqin, WANG Yongji. Identification of rice fan-type silicate bodies and its application in archaeology [J]. Archaeology, 1996(4): 82-86.

    [14]

    Barboni D, Bremond L, Bonnefille R. Comparative study of modern phytolith assemblages from inter-tropical Africa [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2-4): 454-470. doi: 10.1016/j.palaeo.2006.10.012

    [15]

    Bremond L, Alexandre A, Hély C, et al. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon [J]. Global and Planetary Change, 2005, 45(4): 277-293. doi: 10.1016/j.gloplacha.2004.09.002

    [16]

    Bremond L, Alexandre A, Wooller M J, et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains [J]. Global and Planetary Change, 2008, 61(3-4): 209-224. doi: 10.1016/j.gloplacha.2007.08.016

    [17]

    龚家富. 琅岐岛农业生态经济系统能值研究[D]. 福建师范大学硕士学位论文, 2009

    GONG Jiafu. Emergy study of agricultural eco-economic system in Langqi Island[D]. Master Dissertation of Fujian Normal University, 2009.

    [18]

    林鹏, 丘喜昭, 吴志强, 等. 福建植被[M]. 福州: 福建科学技术出版社, 1990

    LIN Peng, QIU Xizhao, WU Zhiqiang, et al. Vegetation of Fujian[M]. Fuzhou: Fujian Science and Technology Press, 1990.

    [19]

    王伏雄, 钱南芬, 张玉龙, 等. 中国植物花粉形态[M]. 2版. 北京: 科学出版社, 1995

    WANG Fuxiong, QIAN Nanfen, ZHANG Yulong, et al. Pollen Morphology of Chinese Plants[M]. 2nd ed. Beijing: Science Press, 1995.

    [20]

    唐领余, 毛礼米, 舒军武, 等. 中国第四纪孢粉图鉴[M]. 北京: 科学出版社, 2016

    TANG Lingyu, MAO Limi, SHU Junwu, et al. The Quaternary Spore Pollen of China[M]. Beijing: Science Press, 2016.

    [21]

    中国科学院植物研究所古植物室孢粉组, 中国科学院华南植物研究所形态研究室. 中国热带亚热带被子植物花粉形态[M]. 北京: 科学出版社, 1982

    Spore Powder Group, Paleobotany Unit, Institute of Botany, Chinese Academy of Sciences, and Morphological Research Unit, South China Institute of Botany, Chinese Academy of Sciences. Pollen Morphology of Tropical and Subtropical Angiosperms of China[M]. Beijing: Science Press, 1982.

    [22]

    International Committee for Phytolith Taxonomy (ICPT). International code for phytolith nomenclature (ICPN) 2.0 [J]. Annals of Botany, 2019, 124(2): 189-199. doi: 10.1093/aob/mcz064

    [23]

    徐凯健, 曾宏达, 张仲德, 等. 亚热带福建省森林生长季与气温、降水相关性的遥感分析[J]. 地球信息科学学报, 2015, 17(10):1249-1259

    XU Kaijian, ZENG Hongda, Chang C, et al. Relating forest phenology to temperature and precipitation in the subtropical region of fujian based on time-series MODIS-NDVI [J]. Journal of Geo-Information Science, 2015, 17(10): 1249-1259.

    [24]

    中华人民共和国水利部. SL 190-2008 土壤侵蚀分类分级标准[S]. 北京: 中国水利水电出版社, 2008

    Ministry of Water Resources of the People's Republic of China. SL 190-2008 Soil erosion classification and grading standard[S]. Beijing: China Water Resources and Hydropower Press, 2008.

    [25]

    田地, 刘政, 胡亚林. 福州市植被覆盖度时空特征及与地形因子的关系[J]. 浙江农林大学学报, 2019, 36(6):1158-1165

    TIAN Di, LIU Zheng, HU Yalin. Spatial-temporal characteristics of vegetation coverage and the relationship to topographic factors in Fuzhou City [J]. Journal of Zhejiang A & F University, 2019, 36(6): 1158-1165.

    [26]

    高桂在, 介冬梅, 刘利丹, 等. 植硅体形态的研究进展[J]. 微体古生物学报, 2016, 33(2):180-189

    GAO Guizai, JIE Dongmei, LIU Lidan, et al. Advance in phytolith morphology research [J]. Acta Micropalaeontologica Sinica, 2016, 33(2): 180-189.

    [27]

    靳桂云, 燕生东, 宇田津彻郎, 等. 山东胶州赵家庄遗址4000年前稻田的植硅体证据[J]. 科学通报, 2007, 52(24):3376-3384 doi: 10.3321/j.issn:0023-074x.2007.18.011

    JIN Guiyun, YAN Shengdong, Udatsu T, et al. Neolithic rice paddy from the Zhaojiazhuang site, Shandong, China [J]. Chinese Science Bulletin, 2007, 52(24): 3376-3384. doi: 10.3321/j.issn:0023-074x.2007.18.011

    [28]

    王灿, 吕厚远. 水稻扇型植硅体研究进展及相关问题[J]. 第四纪研究, 2012, 32(2):269-281

    WANG Can, LÜ Houyuan. Research progress of fan-shaped phytolith of rice and relevant issues [J]. Quaternary Sciences, 2012, 32(2): 269-281.

    [29]

    李仁成, 樊俊, 高崇辉. 植硅体现代过程研究进展[J]. 地球科学进展, 2013, 28(12):1287-1295

    LI Rencheng, FAN Jun, GAO Chonghui. Advances in modern phytolith research [J]. Advances in Earth Science, 2013, 28(12): 1287-1295.

    [30]

    Ball T B, Ehlers R, Standing M D. Review of typologic and morphometric analysis of phytoliths produced by wheat and barley [J]. Breeding Science, 2009, 59(5): 505-512. doi: 10.1270/jsbbs.59.505

    [31]

    葛利花. 城子崖遗址史前生业经济的植硅体分析[D]. 山东大学硕士学位论文, 2019

    GE Lihua. Phytolith analysis of Prehistoric times living economics at Chengziya site[D]. Master Dissertation of Shandong University, 2019.

    [32]

    吴妍. 植硅体分析方法的应用与改进[D]. 中国科学技术大学博士学位论文, 2008

    WU Yan. The application and improvement of phytolith analysis method[D]. Doctor Dissertation of University of Science and Technology of China, 2008.

    [33]

    Yang S X, Zheng Z, Huang K Y, et al. Modern pollen assemblages from cultivated rice fields and rice pollen morphology: application to a study of ancient land use and agriculture in the Pearl River Delta, China [J]. The Holocene, 2012, 22(12): 1393-1404. doi: 10.1177/0959683612449761

    [34]

    李宜垠, 张新时, 周广胜, 等. 中国北方几种常见表土花粉类型与植被的数量关系[J]. 科学通报, 2000, 45(7):761-765 doi: 10.1360/csb2000-45-7-761

    LI Yiyin, ZHANG Xinshi, ZHOU Guangsheng, et al. Quantitative relationships between several common topsoil pollen types and vegetation in northern China [J]. Chinese Science Bulletin, 2000, 45(7): 761-765. doi: 10.1360/csb2000-45-7-761

    [35]

    Wan Q C, Zhang Y Z, Huang K Y, et al. Evaluating quantitative pollen representation of vegetation in the tropics: a case study on the Hainan Island, tropical China [J]. Ecological Indicators, 2020, 114: 106297. doi: 10.1016/j.ecolind.2020.106297

    [36]

    庞瑞洺, 许清海, 丁伟, 等. 河北省中南部农田孢粉组合特征[J]. 地理学报, 2010, 65(11):1345-1354

    PANG Ruiming, XU Qinghai, DING Wei, et al. Pollen assemblage of farmlands in central and southern Hebei Province [J]. Acta Geographica Sinica, 2010, 65(11): 1345-1354.

    [37]

    王学丽, 李月丛, 许清海, 等. 安阳地区不同农业单元表土花粉组合及空间分异[J]. 科学通报, 2010, 55(6):544-554 doi: 10.1007/s11434-009-0480-0

    WANG Xueli, LI Yuecong, XU Qinghai, et al. Pollen assemblages from different agricultural units and their spatial distribution in Anyang area [J]. Chinese Science Bulletin, 2010, 55(6): 544-554. doi: 10.1007/s11434-009-0480-0

    [38]

    张丽艳, 许清海, 李月从, 等. 贺兰山表土花粉与花粉通量对比研究[J]. 地理与地理信息科学, 2007, 23(4):102-106

    ZHANG Liyan, XU Qinghai, LI Yuecong, et al. Pollen influx and surface pollen assemblages in Helan mountain [J]. Geography and Geo-Information Science, 2007, 23(4): 102-106.

    [39]

    李曼玥, 李月丛, 许清海, 等. 东北地区人工扰动植被表土孢粉与植被和气候的关系[J]. 科学通报, 2012, 57(5):535-547 doi: 10.1007/s11434-011-4853-9

    LI Manyue, LI Yuecong, XU Qinghai, et al. Surface pollen assemblages of human-disturbed vegetation and their relationship with vegetation and climate in Northeast China [J]. Chinese Science Bulletin, 2012, 57(5): 535-547. doi: 10.1007/s11434-011-4853-9

    [40]

    王琫瑜, 宋长青, 孙湘君. 内蒙古中部表土花粉研究[J]. 植物学报, 1996, 38(11):902-909

    WANG Fengyu, SONG Changqing, SUN Xiangjun. Study on surface pollen in middle inner Mongolia, China [J]. Acta Botanica Sinica, 1996, 38(11): 902-909.

    [41]

    桑艳礼, 马玉贞, 高尚玉, 等. 甘肃兴隆山国家自然保护区表土花粉组合及数量分析[J]. 古生物学报, 2008, 47(4):457-467

    SANG Yanli, MA Yuzhen, GAO Shangyu, et al. Pollen assemblages and numerical analysis of surface samples from Xinglong Mountain National Reserve, Gansu [J]. Acta Palaeontologica Sinica, 2008, 47(4): 457-467.

    [42]

    Ma T, Rolett B V, Zheng Z, et al. Holocene coastal evolution preceded the expansion of paddy field rice farming [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24138-24143. doi: 10.1073/pnas.1919217117

    [43]

    胡慧娟, 张娆挺, 陈剑榕. 福建闽江口外海岸植物生态[J]. 海洋学报, 2001, 23(5):110-115

    HU Huijuan, ZHANG Yaoting, CHEN Jianrong. Plant ecology of the outer coast of the Minjiang River Estuary in Fujian [J]. Acta Oceanologica Sinica, 2001, 23(5): 110-115.

    [44]

    Twiss P C, Suess E, Smith R M. Morphological classification of grass phytoliths [J]. Soil Science Society of America Journal, 1969, 33(1): 109-115. doi: 10.2136/sssaj1969.03615995003300010030x

    [45]

    Madella M, Lancelotti C. Taphonomy and phytoliths: a user manual [J]. Quaternary International, 2012, 275: 76-83. doi: 10.1016/j.quaint.2011.09.008

    [46]

    徐德克, 李泉, 吕厚远. 棕榈科植硅体形态分析及其环境意义[J]. 第四纪研究, 2005, 25(6):785-792

    XU Deke, LI Quan, LÜ Houyuan. Morphological analysis of phytoliths in palmae and its environmental significance [J]. Quaternary Sciences, 2005, 25(6): 785-792.

    [47]

    Astudillo F J. Soil phytoliths as indicators of initial human impact on San Cristóbal Island, Galápagos [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 522-532. doi: 10.1016/j.palaeo.2017.11.038

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1054
  • PDF下载数:  96
  • 施引文献:  0
出版历程
收稿日期:  2022-12-31
修回日期:  2023-03-10
录用日期:  2023-03-10
刊出日期:  2024-02-28

目录