Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland
-
摘要:
土壤铁氧化物结合态有机碳是有机碳长期维持的主要途径,但其机理研究仍较为薄弱。为探究河口湿地围垦稻田对土壤铁碳结合特征的影响,本研究选择福建省闽江河口天然芦苇湿地与围垦稻田为研究对象,对两种类型土壤中的铁结合态有机碳(Fe-OC)及其相关指标进行测定与分析。结果显示:① 芦苇湿地围垦稻田改变了土壤氧化还原过程,显著影响土壤中铁相的转化。围垦后土壤二价铁[Fe(Ⅱ)]、三价铁[Fe(Ⅲ)]、活性总铁含量(HCl-Fet)及Fe(Ⅲ)/Fe(Ⅱ)分别显著下降了24.68%、52.56%、51.45%、35.68% (P<0.05)。游离态氧化铁(Fed)与无定形态铁(Feo)含量分别显著下降了21.64% 和29.24%(P<0.05),络合态铁(Fep)含量则有所增加。② 芦苇湿地围垦稻田显著影响土壤碳固存,Fe-OC与土壤有机碳含量(SOC)在围垦稻田后分别显著下降了39.03% 和18.42%(P<0.05);芦苇湿地与稻田土壤Fe-OC均主要以吸附途径结合,稻田土壤Fe-OC对土壤有机碳的贡献率(fFe-OC)显著高于芦苇湿地(P<0.05)。③ 土壤全氮、含水量、电导率、铁以及土壤有机碳、溶解性有机碳与Fe-OC呈显著正相关(P<0.01)。本研究可为退耕还湿、土壤碳增汇提供科学参考。
Abstract:Iron oxide bound organic carbon is the main pathway for long-term stability of organic carbon. However, study of its mechanism remains weak. To understand the impact of estuarine wetland reclamation of paddy field on soil iron-carbon binding characteristics, we measured the soil iron-bound organic carbon (Fe-OC) and its related indicators in the natural reed (Phragmite australis) wetland and paddy field reclamation in Minjiang River estuary, Fujian Province. Results show that the wetland reclamation significantly affected the soil oxidation and reduction condition, and the redox process significantly affected the transformation of iron (Fe) phase in soil. After the wetland reclamation, the content of bivalent iron [Fe(Ⅱ)], trivalent iron [Fe(Ⅲ)], active total iron (HCl-Fet), and Fe(Ⅲ)/Fe(Ⅱ) in the soil significantly decreased by 24.68%, 52.56%, 51.45%, and 35.68%, respectively (P<0.05). The content of free Fe oxide (Fed) and amorphous iron (Feo) in the soil significantly decreased by 21.64% and 29.24%, respectively (P<0.05), but the content of complex iron (Fep) increased. In addition, the wetland reclamation significantly affected the soil carbon retention, and the content of Fe-OC and soil organic carbon (SOC) in the soil significantly decreased by 39.03% and 18.42% after the reclamation (P<0.05). In both reed wetland and paddy field, soil Fe-OC was combined dominantly through adsorption. The contribution rate of paddy field soil Fe-OC to SOC (fFe-OC) was significantly higher than that of reed wetland (P<0.05). Finally. there were significant positive correlations (P<0.01) between soil TN, water content, conductivity, Fe, SOC, dissolved organic carbon, and Fe-OC. This study provided scientific guidance for wetland restoration and increasing soil carbon sequestration.
-
Key words:
- iron /
- iron-bound organic carbon /
- reed wetland /
- paddy field /
- Minjiang River estuary
-
-
表 1 芦苇湿地与稻田土壤氧化铁参数特征
Table 1. Characteristics of parameters of Fe oxide in soil in P. australis wetland and paddy field
指标 采样时间 土层深度/cm 样地类型 芦苇湿地 稻田 活化度/% 春 0~10 67.28 ± 6.84Ba 63.84 ± 1.75Aa 10~20 69.79 ± 6.47Ba 68.42 ± 5.15Aa 20~30 75.04 ± 3.71Aa 53.21 ± 2.07Bb 冬 0~10 51.52 ± 5.66Aa 59.11 ± 7.75Aa 10~20 46.43 ± 3.29Bb 51.57 ± 3.71Aa 20~30 64.31 ± 4.90Aa 27.82 ± 3.73Bb 络合度/% 春 0~10 7.17 ± 0.72Ab 13.02±1.22Aa 10~20 7.80 ± 0.73Ab 9.63±0.22Ba 20~30 7.11 ± 0.88Aa 4.03±1.17Cb 冬 0~10 10.32 ± 1.76Aa 12.82±0.85Aa 10~20 7.85 ±2.36Bb 10.82±0.77Aa 20~30 5.70 ± 0.50Ca 4.08±1.11Ba 晶质氧化铁
/(g·kg-1)春 0~10 4.42±0.91Aa 4.35±0.20Ba 10~20 4.35±0.93Aa 3.68±0.64Ba 20~30 3.87±0.76Ab 7.06±1.40Aa 冬 0~10 6.85±0.77Aa 4.45±0.72Bb 10~20 7.73±0.56Aa 5.10±0.51Bb 20~30 5.25±0.95Ba 7.97±0.51Ab 晶胶率 春 0~10 0.53±0.15Aa 0.57±0.04Ba 10~20 0.48±0.17Aa 0.49±0.13Ba 20~30 0.34±0.07Bb 0.89±0.07Aa 冬 0~10 1.01±0.20Aa 0.79±0.26Bb 10~20 1.19±0.15Aa 0.97±0.13Ba 20~30 0.58±0.13Bb 2.14±0.11Aa 注:图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。 -
[1] Sasmito S D, Taillardat P, Clendenning J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review [J]. Global Change Biology, 2019, 25(12): 4291-4302. doi: 10.1111/gcb.14774
[2] Krause L, Klumpp E, Nofz I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols [J]. Geoderma, 2020, 374: 114421. doi: 10.1016/j.geoderma.2020.114421
[3] Xia S P, Song Z L, Li Q, et al. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker [J]. Global Change Biology, 2021, 27(2): 417-434. doi: 10.1111/gcb.15403
[4] Fluet-Chouinard E, Stocker B D, Zhang Z, et al. Extensive global wetland loss over the past three centuries [J]. Nature, 2023, 614(7947): 281-286. doi: 10.1038/s41586-022-05572-6
[5] Galford G L, Melillo J, Mustard J F, et al. The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions [J]. Earth Interactions, 2010, 14(15): 1-24. doi: 10.1175/2010EI327.1
[6] Girsang S S, Correa T Q, Quilty J R, et al. Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel [J]. Soil and Tillage Research, 2020, 202: 104647. doi: 10.1016/j.still.2020.104647
[7] 崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策[J]. 中国科学院院刊, 2017, 32(4):418-425
CUI Baoshan, XIE Tian, WANG Qing, et al. Impact of large-scale reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(4): 418-425.
[8] Xia S P, Song Z L, Van Zwieten L, et al. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China [J]. Global Change Biology, 2022, 28(20): 6065-6085. doi: 10.1111/gcb.16325
[9] Tan L S, Ge Z M, Ji Y H, et al. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss [J]. Global Ecology and Biogeography, 2022, 31(12): 2541-2563. doi: 10.1111/geb.13597
[10] 张鑫磊, 宋怡轩, 张洁, 等. 围垦植稻对崇明东滩湿地产甲烷微生物的影响[J]. 农业环境科学学报, 2020, 39(2):411-417
ZHANG Xinlei, SONG Yixuan, ZHANG Jie, et al. Effects of reclamation and cultivating rice on CH4-producing microorganisms in Chongming Dongtan Wetland, China [J]. Journal of Agro-Environment Science, 2020, 39(2): 411-417.
[11] Wang F, Wang T, Gustave W, et al. Spatial-temporal patterns of organic carbon sequestration capacity after long-term coastal wetland reclamation [J]. Agriculture, Ecosystems & and Environment, 2023, 341: 108209.
[12] 王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5):1041-1050
WANG Luying, QIN Lei, LÜ Xianguo, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050.
[13] 段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2):202-211
DUAN Xun, LI Zhe, LIU Miao, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization [J]. Advances in Earth Science, 2022, 37(2): 202-211.
[14] Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature, 2012, 483(7388): 198-200. doi: 10.1038/nature10855
[15] Duan X, Yu X F, Li Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949
[16] Wan D, Ye T H, Lu Y, et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils [J]. European Journal of Soil Science, 2019, 70(6): 1153-1163.
[17] Zhao Q, Poulson S. R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization [J]. Biogeosciences, 2016, 13(16): 4777-4788. doi: 10.5194/bg-13-4777-2016
[18] 仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9):1165-1180
TONG Chuan, HUANG Jianfang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary [J]. Acta Geographica Sinica, 2012, 67(9): 1165-1180.
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000
LU Rukun. Analysis Methods of Soil Science and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[20] Song L, Tian P, Zhang J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China [J]. Science of the Total Environment, 2017, 609: ,1303-1311. doi: 10.1016/j.scitotenv.2017.08.017
[21] Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils [J]. Biology and Fertility of Soils, 2000, 30(5): 374-387.
[22] Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459
[23] Kostka J E, Luther III G W. Partitioning and speciation of solid phase iron in saltmarsh sediments [J]. Geochimica et Cosmochimica Acta, 1994, 58(7): 1701-1710. doi: 10.1016/0016-7037(94)90531-2
[24] Chen C M, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & and Technology, 2014, 48(23): 13751-13759.
[25] 陈留美, 赵东波, 韩光中, 等. 中国稻田土壤铁流失及其环境意义[J]. 中国科学:地球科学, 2022, 5265(7):127753-129167
CHEN Liumei, ZHAO Dongbo, HAN Guangzhong, et al. Iron loss of paddy soil in China and its environmental implications [J]. Science China:Earth Sciences, 2022, 5265(7): 127753-129167.
[26] Giannetta B, Siebecker M G, Zaccone C, et al. Iron (Ⅲ) fate after complexation with soil organic matter in fine silt and clay fractions: an EXAFS spectroscopic approach [J]. Soil and Tillage Research, 2020, 200: 104617. doi: 10.1016/j.still.2020.104617
[27] Longman J, Faust J C, Bryce C, et al. Organic carbon burial with reactive iron across global environments [J]. Global Biogeochemical Cycles, 2022, 36(11): e2022GB007447. doi: 10.1029/2022GB007447
[28] Li Y, Fu C C, Zeng L, et al. Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats [J]. Environmental Science and & Technology, 2021, 55(9): 6495-6504.
[29] Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments [J]. Geophysical Research Letters, 2016, 43(3): 1149-1157. doi: 10.1002/2015GL067388
[30] Jones M E, Beckler J S, Taillefert M. The flux of soluble organic-iron (Ⅲ) complexes from sediments represents a source of stable iron (Ⅲ) to estuarine waters and to the continental shelf [J]. Limnology and Oceanography, 2011, 56(5): 1811-1823. doi: 10.4319/lo.2011.56.5.1811
[31] Chen N, Fu Q L, Wu T L, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil [J]. Environmental Science and & Technology, 2021, 55(20): 14281-14293.
[32] Wei L, Zhu Z K, Razavi B S, et al. Visualization and quantification of carbon “rusty sink” by rice root iron plaque: mechanisms, functions, and global implications [J]. Global Change Biology, 2022, 28(22): 6711-6727. doi: 10.1111/gcb.16372
[33] Yao Y, Wang L L, Peduruhewa J G, et al. The coupling between iron and carbon and iron reducing bacteria control carbon sequestration in paddy soils [J]. Catena, 2023, 223: 106937. doi: 10.1016/j.catena.2023.106937
[34] Riedel T, Zak D, Biester H, et al. T. Iron traps terrestrially derived dissolved organic matter at redox interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. doi: 10.1073/pnas.1221487110
[35] Wang W, Sardans J, Zeng C, et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland [J]. Geoderma, 2014, 232-234: 459-470. doi: 10.1016/j.geoderma.2014.06.004
[36] Howard J, Sutton-Grier A, Herr D, et al. Clarifying the role of coastal and marine systems in climate mitigation [J]. Frontiers in Ecology and the Environment, 2017, 15(1): 42-50. doi: 10.1002/fee.1451
[37] Button E S, Chadwick D R, Jones D L. Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy [J]. Geoderma, 2022, 409: 115646. doi: 10.1016/j.geoderma.2021.115646
[38] Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon [J]. Biogeochemistry, 2018, 137(1-2): 27-49. doi: 10.1007/s10533-017-0410-1
[39] Faust J C, Tessin A, Fisher B J, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments [J]. Nature Communications, 2021, 12(1): 275-284. doi: 10.1038/s41467-020-20550-0
[40] Setia R, Smith P, Marschner P, Gottschalk, P, et al. Simulation of salinity effects on past, present, and future soil organic carbon stocks [J]. Environmental Science and & Technology, 2012, 46(3): 1624-1631.
[41] Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35. doi: 10.1016/j.gca.2006.08.047
[42] Duan X, Li Z, Li Y H, et al. Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming [J]. Soil Biology and Biochemistry, 2023, 179: 108972. doi: 10.1016/j.soilbio.2023.108972
[43] Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014
[44] 林于蓝, 陈钰, 尹晓雷, 等. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响[J]. 环境科学学报, 2022, 42(7):466-477
LIN Yulan, CHEN Yu, YIN Xiaolei, et al. Effects of reclamation and pond returning on iron-bound organic carbon characteristics in the soil of Minjiang estuarine wetland [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 466-477.
[45] Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014
[46] Zhao Y P, Xiang W, Ma M, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? [J]. Plant and Soil, 2019, 443(1-2): 575-590. doi: 10.1007/s11104-019-04245-0
[47] Wang Y Y, Wang H, He J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972-9. doi: 10.1038/ncomms15972
[48] Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau [J]. Geophysical Research Letters, 2016, 43(19): 10-286-10294.
[49] Huang X Y, Liu X W, Liu J L, et al. Iron-bound organic carbon and their determinants in peatlands of China [J]. Geoderma, 2021, 391: 114974. doi: 10.1016/j.geoderma.2021.114974
[50] 杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量, 分布与调控[J]. 科学通报, 2023, 68(6):695-704 doi: 10.1360/TB-2022-0728
YANG Ying, WU Fuzhong, WU Qiuxia, et al. Soil organic carbon associated with iron oxides in terrestrial ecosystems: content, distribution and control [J]. Chinese Science Bulletin, 2023, 68(6): 695-704. doi: 10.1360/TB-2022-0728
-