闽江河口湿地围垦稻田对土壤铁碳结合特征的影响

刘旭阳, 王纯, 郭萍萍, 方云英, 沈李东, 胡世文, 黑杰, 王亚非, 胥佳忆, 王维奇. 闽江河口湿地围垦稻田对土壤铁碳结合特征的影响[J]. 海洋地质与第四纪地质, 2024, 44(1): 44-54. doi: 10.16562/j.cnki.0256-1492.2023031701
引用本文: 刘旭阳, 王纯, 郭萍萍, 方云英, 沈李东, 胡世文, 黑杰, 王亚非, 胥佳忆, 王维奇. 闽江河口湿地围垦稻田对土壤铁碳结合特征的影响[J]. 海洋地质与第四纪地质, 2024, 44(1): 44-54. doi: 10.16562/j.cnki.0256-1492.2023031701
LIU Xuyang, WANG Chun, GUO Pingping, FANG Yunying, SHEN Lidong, HU Shiwen, HEI Jie, WANG Yafei, XU Jiayi, WANG Weiqi. Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 44-54. doi: 10.16562/j.cnki.0256-1492.2023031701
Citation: LIU Xuyang, WANG Chun, GUO Pingping, FANG Yunying, SHEN Lidong, HU Shiwen, HEI Jie, WANG Yafei, XU Jiayi, WANG Weiqi. Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 44-54. doi: 10.16562/j.cnki.0256-1492.2023031701

闽江河口湿地围垦稻田对土壤铁碳结合特征的影响

  • 基金项目: 国家自然科学基金“河口湿地围垦稻田后土壤铁结合态有机碳的演变趋势和稳定机制”(42077086)
详细信息
    作者简介: 刘旭阳(1994—),男,博士研究生,主要研究方向为湿地生态学,E-mail:lesliexyang@163.com
    通讯作者: 王维奇(1982—),男,研究员,主要从事生态与环境研究,E-mail:wangweiqi15@163.com
  • 中图分类号: P736.4

Effects of reclamation of paddy fields on soil iron-bound organic carbon in Minjiang River estuarine wetland

More Information
  • 土壤铁氧化物结合态有机碳是有机碳长期维持的主要途径,但其机理研究仍较为薄弱。为探究河口湿地围垦稻田对土壤铁碳结合特征的影响,本研究选择福建省闽江河口天然芦苇湿地与围垦稻田为研究对象,对两种类型土壤中的铁结合态有机碳(Fe-OC)及其相关指标进行测定与分析。结果显示:① 芦苇湿地围垦稻田改变了土壤氧化还原过程,显著影响土壤中铁相的转化。围垦后土壤二价铁[Fe(Ⅱ)]、三价铁[Fe(Ⅲ)]、活性总铁含量(HCl-Fet)及Fe(Ⅲ)/Fe(Ⅱ)分别显著下降了24.68%、52.56%、51.45%、35.68% (P<0.05)。游离态氧化铁(Fed)与无定形态铁(Feo)含量分别显著下降了21.64% 和29.24%(P<0.05),络合态铁(Fep)含量则有所增加。② 芦苇湿地围垦稻田显著影响土壤碳固存,Fe-OC与土壤有机碳含量(SOC)在围垦稻田后分别显著下降了39.03% 和18.42%(P<0.05);芦苇湿地与稻田土壤Fe-OC均主要以吸附途径结合,稻田土壤Fe-OC对土壤有机碳的贡献率(fFe-OC)显著高于芦苇湿地(P<0.05)。③ 土壤全氮、含水量、电导率、铁以及土壤有机碳、溶解性有机碳与Fe-OC呈显著正相关(P<0.01)。本研究可为退耕还湿、土壤碳增汇提供科学参考。

  • 加载中
  • 图 1  芦苇湿地与稻田土壤铁含量特征

    Figure 1. 

    图 2  芦苇湿地与稻田土壤氧化铁含量特征

    Figure 2. 

    图 3  芦苇湿地与稻田土壤铁结合态有机碳及碳铁比特征

    Figure 3. 

    图 4  芦苇湿地与稻田土壤铁结合态有机碳与其影响因子相关性

    Figure 4. 

    图 5  芦苇湿地与稻田土壤铁碳结合特征的RDA分析

    Figure 5. 

    图 6  河口湿地围垦稻田铁碳结合特征概念模型图

    Figure 6. 

    表 1  芦苇湿地与稻田土壤氧化铁参数特征

    Table 1.  Characteristics of parameters of Fe oxide in soil in P. australis wetland and paddy field

    指标采样时间土层深度/cm样地类型
    芦苇湿地稻田
    活化度/%0~1067.28 ± 6.84Ba63.84 ± 1.75Aa
    10~2069.79 ± 6.47Ba68.42 ± 5.15Aa
    20~3075.04 ± 3.71Aa53.21 ± 2.07Bb
    0~1051.52 ± 5.66Aa59.11 ± 7.75Aa
    10~2046.43 ± 3.29Bb51.57 ± 3.71Aa
    20~3064.31 ± 4.90Aa27.82 ± 3.73Bb
    络合度/%0~107.17 ± 0.72Ab13.02±1.22Aa
    10~207.80 ± 0.73Ab9.63±0.22Ba
    20~307.11 ± 0.88Aa4.03±1.17Cb
    0~1010.32 ± 1.76Aa12.82±0.85Aa
    10~207.85 ±2.36Bb10.82±0.77Aa
    20~305.70 ± 0.50Ca4.08±1.11Ba
    晶质氧化铁
    /(g·kg-1)
    0~104.42±0.91Aa4.35±0.20Ba
    10~204.35±0.93Aa3.68±0.64Ba
    20~303.87±0.76Ab7.06±1.40Aa
    0~106.85±0.77Aa4.45±0.72Bb
    10~207.73±0.56Aa5.10±0.51Bb
    20~305.25±0.95Ba7.97±0.51Ab
    晶胶率0~100.53±0.15Aa0.57±0.04Ba
    10~200.48±0.17Aa0.49±0.13Ba
    20~300.34±0.07Bb0.89±0.07Aa
    0~101.01±0.20Aa0.79±0.26Bb
    10~201.19±0.15Aa0.97±0.13Ba
    20~300.58±0.13Bb2.14±0.11Aa
    注:图中不同小写字母表示不同采样点土壤同一深度间存在显著性差异(P<0.05),不同大写字母表示同一采样点土壤不同深度存在显著差异性(P<0.05)。
    下载: 导出CSV

    表 2  不同生境下铁结合态有机碳对总有机碳的贡献

    Table 2.  Contribution of iron-bound organic carbon to total organic carbon in different habitats

    研究对象铁结合态有机碳对总有机碳贡献/%参考文献
    滨海沉积物21.7±7.8[14]
    淡水湿地根际土壤12.50[15]
    农田土壤15.7±6.4[16]
    轮作农田土壤41~50[45]
    森林土壤37.8±20.0[46]
    亚高山湿地土壤5.4~11.8[47]
    高原永冻土壤19.5±12.3[48]
    泥炭湿地土壤3.42±1.32[49]
    下载: 导出CSV
  • [1]

    Sasmito S D, Taillardat P, Clendenning J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: a systematic review [J]. Global Change Biology, 2019, 25(12): 4291-4302. doi: 10.1111/gcb.14774

    [2]

    Krause L, Klumpp E, Nofz I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols [J]. Geoderma, 2020, 374: 114421. doi: 10.1016/j.geoderma.2020.114421

    [3]

    Xia S P, Song Z L, Li Q, et al. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ13C-δ15N, and lignin biomarker [J]. Global Change Biology, 2021, 27(2): 417-434. doi: 10.1111/gcb.15403

    [4]

    Fluet-Chouinard E, Stocker B D, Zhang Z, et al. Extensive global wetland loss over the past three centuries [J]. Nature, 2023, 614(7947): 281-286. doi: 10.1038/s41586-022-05572-6

    [5]

    Galford G L, Melillo J, Mustard J F, et al. The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions [J]. Earth Interactions, 2010, 14(15): 1-24. doi: 10.1175/2010EI327.1

    [6]

    Girsang S S, Correa T Q, Quilty J R, et al. Soil aeration and relationship to inorganic nitrogen during aerobic cultivation of irrigated rice on a consolidated land parcel [J]. Soil and Tillage Research, 2020, 202: 104647. doi: 10.1016/j.still.2020.104647

    [7]

    崔保山, 谢湉, 王青, 等. 大规模围填海对滨海湿地的影响与对策[J]. 中国科学院院刊, 2017, 32(4):418-425

    CUI Baoshan, XIE Tian, WANG Qing, et al. Impact of large-scale reclamation on coastal wetlands and implications for ecological restoration, compensation, and sustainable exploitation framework [J]. Bulletin of Chinese Academy of Sciences, 2017, 32(4): 418-425.

    [8]

    Xia S P, Song Z L, Van Zwieten L, et al. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China [J]. Global Change Biology, 2022, 28(20): 6065-6085. doi: 10.1111/gcb.16325

    [9]

    Tan L S, Ge Z M, Ji Y H, et al. Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss [J]. Global Ecology and Biogeography, 2022, 31(12): 2541-2563. doi: 10.1111/geb.13597

    [10]

    张鑫磊, 宋怡轩, 张洁, 等. 围垦植稻对崇明东滩湿地产甲烷微生物的影响[J]. 农业环境科学学报, 2020, 39(2):411-417

    ZHANG Xinlei, SONG Yixuan, ZHANG Jie, et al. Effects of reclamation and cultivating rice on CH4-producing microorganisms in Chongming Dongtan Wetland, China [J]. Journal of Agro-Environment Science, 2020, 39(2): 411-417.

    [11]

    Wang F, Wang T, Gustave W, et al. Spatial-temporal patterns of organic carbon sequestration capacity after long-term coastal wetland reclamation [J]. Agriculture, Ecosystems & and Environment, 2023, 341: 108209.

    [12]

    王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5):1041-1050

    WANG Luying, QIN Lei, LÜ Xianguo, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon [J]. Acta Pedologica Sinica, 2018, 55(5): 1041-1050.

    [13]

    段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2):202-211

    DUAN Xun, LI Zhe, LIU Miao, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization [J]. Advances in Earth Science, 2022, 37(2): 202-211.

    [14]

    Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron [J]. Nature, 2012, 483(7388): 198-200. doi: 10.1038/nature10855

    [15]

    Duan X, Yu X F, Li Z, et al. Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands [J]. Soil Biology and Biochemistry, 2020, 149: 107949. doi: 10.1016/j.soilbio.2020.107949

    [16]

    Wan D, Ye T H, Lu Y, et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils [J]. European Journal of Soil Science, 2019, 70(6): 1153-1163.

    [17]

    Zhao Q, Poulson S. R, Obrist D, et al. Iron-bound organic carbon in forest soils: quantification and characterization [J]. Biogeosciences, 2016, 13(16): 4777-4788. doi: 10.5194/bg-13-4777-2016

    [18]

    仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9):1165-1180

    TONG Chuan, HUANG Jianfang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary [J]. Acta Geographica Sinica, 2012, 67(9): 1165-1180.

    [19]

    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    LU Rukun. Analysis Methods of Soil Science and Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [20]

    Song L, Tian P, Zhang J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of Northeast China [J]. Science of the Total Environment, 2017, 609: ,1303-1311. doi: 10.1016/j.scitotenv.2017.08.017

    [21]

    Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils [J]. Biology and Fertility of Soils, 2000, 30(5): 374-387.

    [22]

    Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459

    [23]

    Kostka J E, Luther III G W. Partitioning and speciation of solid phase iron in saltmarsh sediments [J]. Geochimica et Cosmochimica Acta, 1994, 58(7): 1701-1710. doi: 10.1016/0016-7037(94)90531-2

    [24]

    Chen C M, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption [J]. Environmental Science & and Technology, 2014, 48(23): 13751-13759.

    [25]

    陈留美, 赵东波, 韩光中, 等. 中国稻田土壤铁流失及其环境意义[J]. 中国科学:地球科学, 2022, 5265(7):127753-129167

    CHEN Liumei, ZHAO Dongbo, HAN Guangzhong, et al. Iron loss of paddy soil in China and its environmental implications [J]. Science China:Earth Sciences, 2022, 5265(7): 127753-129167.

    [26]

    Giannetta B, Siebecker M G, Zaccone C, et al. Iron (Ⅲ) fate after complexation with soil organic matter in fine silt and clay fractions: an EXAFS spectroscopic approach [J]. Soil and Tillage Research, 2020, 200: 104617. doi: 10.1016/j.still.2020.104617

    [27]

    Longman J, Faust J C, Bryce C, et al. Organic carbon burial with reactive iron across global environments [J]. Global Biogeochemical Cycles, 2022, 36(11): e2022GB007447. doi: 10.1029/2022GB007447

    [28]

    Li Y, Fu C C, Zeng L, et al. Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats [J]. Environmental Science and & Technology, 2021, 55(9): 6495-6504.

    [29]

    Shields M R, Bianchi T S, Gélinas Y, et al. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments [J]. Geophysical Research Letters, 2016, 43(3): 1149-1157. doi: 10.1002/2015GL067388

    [30]

    Jones M E, Beckler J S, Taillefert M. The flux of soluble organic-iron (Ⅲ) complexes from sediments represents a source of stable iron (Ⅲ) to estuarine waters and to the continental shelf [J]. Limnology and Oceanography, 2011, 56(5): 1811-1823. doi: 10.4319/lo.2011.56.5.1811

    [31]

    Chen N, Fu Q L, Wu T L, et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil [J]. Environmental Science and & Technology, 2021, 55(20): 14281-14293.

    [32]

    Wei L, Zhu Z K, Razavi B S, et al. Visualization and quantification of carbon “rusty sink” by rice root iron plaque: mechanisms, functions, and global implications [J]. Global Change Biology, 2022, 28(22): 6711-6727. doi: 10.1111/gcb.16372

    [33]

    Yao Y, Wang L L, Peduruhewa J G, et al. The coupling between iron and carbon and iron reducing bacteria control carbon sequestration in paddy soils [J]. Catena, 2023, 223: 106937. doi: 10.1016/j.catena.2023.106937

    [34]

    Riedel T, Zak D, Biester H, et al. T. Iron traps terrestrially derived dissolved organic matter at redox interfaces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. doi: 10.1073/pnas.1221487110

    [35]

    Wang W, Sardans J, Zeng C, et al. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland [J]. Geoderma, 2014, 232-234: 459-470. doi: 10.1016/j.geoderma.2014.06.004

    [36]

    Howard J, Sutton-Grier A, Herr D, et al. Clarifying the role of coastal and marine systems in climate mitigation [J]. Frontiers in Ecology and the Environment, 2017, 15(1): 42-50. doi: 10.1002/fee.1451

    [37]

    Button E S, Chadwick D R, Jones D L. Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy [J]. Geoderma, 2022, 409: 115646. doi: 10.1016/j.geoderma.2021.115646

    [38]

    Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon [J]. Biogeochemistry, 2018, 137(1-2): 27-49. doi: 10.1007/s10533-017-0410-1

    [39]

    Faust J C, Tessin A, Fisher B J, et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments [J]. Nature Communications, 2021, 12(1): 275-284. doi: 10.1038/s41467-020-20550-0

    [40]

    Setia R, Smith P, Marschner P, Gottschalk, P, et al. Simulation of salinity effects on past, present, and future soil organic carbon stocks [J]. Environmental Science and & Technology, 2012, 46(3): 1624-1631.

    [41]

    Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35. doi: 10.1016/j.gca.2006.08.047

    [42]

    Duan X, Li Z, Li Y H, et al. Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming [J]. Soil Biology and Biochemistry, 2023, 179: 108972. doi: 10.1016/j.soilbio.2023.108972

    [43]

    Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014

    [44]

    林于蓝, 陈钰, 尹晓雷, 等. 围垦养殖与退塘还湿对闽江河口湿地土壤铁碳结合特征的影响[J]. 环境科学学报, 2022, 42(7):466-477

    LIN Yulan, CHEN Yu, YIN Xiaolei, et al. Effects of reclamation and pond returning on iron-bound organic carbon characteristics in the soil of Minjiang estuarine wetland [J]. Acta Scientiae Circumstantiae, 2022, 42(7): 466-477.

    [45]

    Jiang Z H, Liu Y Z, Lin J D, et al. Conversion from double-rice to maize-rice increases iron-bound organic carbon by “iron gate” and “enzyme latch” mechanisms [J]. Soil and Tillage Research, 2021, 211: 105014. doi: 10.1016/j.still.2021.105014

    [46]

    Zhao Y P, Xiang W, Ma M, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? [J]. Plant and Soil, 2019, 443(1-2): 575-590. doi: 10.1007/s11104-019-04245-0

    [47]

    Wang Y Y, Wang H, He J S, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communications, 2017, 8(1): 15972-9. doi: 10.1038/ncomms15972

    [48]

    Mu C C, Zhang T J, Zhao Q, et al. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai-Tibet Plateau [J]. Geophysical Research Letters, 2016, 43(19): 10-286-10294.

    [49]

    Huang X Y, Liu X W, Liu J L, et al. Iron-bound organic carbon and their determinants in peatlands of China [J]. Geoderma, 2021, 391: 114974. doi: 10.1016/j.geoderma.2021.114974

    [50]

    杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量, 分布与调控[J]. 科学通报, 2023, 68(6):695-704 doi: 10.1360/TB-2022-0728

    YANG Ying, WU Fuzhong, WU Qiuxia, et al. Soil organic carbon associated with iron oxides in terrestrial ecosystems: content, distribution and control [J]. Chinese Science Bulletin, 2023, 68(6): 695-704. doi: 10.1360/TB-2022-0728

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1762
  • PDF下载数:  85
  • 施引文献:  0
出版历程
收稿日期:  2023-03-17
修回日期:  2023-04-11
刊出日期:  2024-02-28

目录