基于浅地层剖面振幅属性的海底沉积物类型反演

高军锋, 唐松华, 张胜江, 姜胜辉, 刘龙龙, 王圣民, 林森, 黄瑶. 基于浅地层剖面振幅属性的海底沉积物类型反演——以舟山群岛为例[J]. 海洋地质与第四纪地质, 2023, 43(6): 131-144. doi: 10.16562/j.cnki.0256-1492.2023050401
引用本文: 高军锋, 唐松华, 张胜江, 姜胜辉, 刘龙龙, 王圣民, 林森, 黄瑶. 基于浅地层剖面振幅属性的海底沉积物类型反演——以舟山群岛为例[J]. 海洋地质与第四纪地质, 2023, 43(6): 131-144. doi: 10.16562/j.cnki.0256-1492.2023050401
GAO Junfeng, TANG Songhua, ZHANG Shengjiang, JIANG Shenghui, LIU Longlong, WANG Shengmin, LIN Sen, HUANG Yao. Using amplitude properties of shallow seismic profiles to reveal the seabed sediment types: A case study in Zhoushan Islands[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 131-144. doi: 10.16562/j.cnki.0256-1492.2023050401
Citation: GAO Junfeng, TANG Songhua, ZHANG Shengjiang, JIANG Shenghui, LIU Longlong, WANG Shengmin, LIN Sen, HUANG Yao. Using amplitude properties of shallow seismic profiles to reveal the seabed sediment types: A case study in Zhoushan Islands[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 131-144. doi: 10.16562/j.cnki.0256-1492.2023050401

基于浅地层剖面振幅属性的海底沉积物类型反演

  • 基金项目: 中国地质调查项目“浙江舟山市等 6 幅 1:5 万综合地质调查”(DD20211586)
详细信息
    作者简介: 高军锋(1985—),男,硕士,工程师,从事海岸带基础地质调查方面的研究工作,E-mail:17697115278@163.com
    通讯作者: 姜胜辉(1981—),男,硕士,副教授,从事海洋环境地质与工程的研究工作,E-mail:jsh254677@ouc.edu.cn
  • 中图分类号: P736

Using amplitude properties of shallow seismic profiles to reveal the seabed sediment types: A case study in Zhoushan Islands

More Information
  • 应用声学方法反演海底沉积物类型对于研究海洋和开发海洋具有重要意义。基于有限的海底取样或原位测试获取海底沉积物类型,其成本高、效率低、连续性差,而声学反演方法由于其迅速、连续、方便、经济等优点受到普遍重视。本文基于在舟山群岛海域获取的高密度高分辨率浅地层剖面数据,利用前处理、振幅属性提取等技术进行海底表层沉积物类型反演,通过与侧扫声呐数据解释的地貌类型和实测海底表层沉积物类型对比,发现浅地层剖面振幅均方根RMS属性值可较准确地反演海底表层沉积物类型。利用最近获得的1 100 km浅地层剖面振幅RMS属性值反演出舟山群岛的沉积物类型主要有黏土、黏土质粉砂、粉砂、砂和基岩5种类型,通过与实测数据对比,初步估算准确率在72%以上,表明作为一种新的利用浅地层剖面振幅属性反演海底表层沉积物类型的方法在该区是可行的。

  • 加载中
  • 图 1  研究区内浅地层剖面和侧扫声呐测线图

    Figure 1. 

    图 2  带通滤波前(a)和滤波后(b)海底振幅属性对比

    Figure 2. 

    图 3  振幅补偿前(左)和补偿后(右)剖面对比

    Figure 3. 

    图 4  海底多次波处理前(左)和处理后(右)效果对比图

    Figure 4. 

    图 5  海底跟踪拾取

    Figure 5. 

    图 6  子波长度估测

    Figure 6. 

    图 7  测线3500—3670炮震源无激发记录

    Figure 7. 

    图 8  根据浅地层剖面数据提取的各振幅属性值

    Figure 8. 

    图 9  各振幅属性值克里金栅格化后等值线图

    Figure 9. 

    图 10  侧扫声呐数据揭示的潮道底部出露的基岩

    Figure 10. 

    图 11  侧扫声呐揭示的沙波

    Figure 11. 

    图 12  侧扫声呐数据解释的地貌分类及其分布

    Figure 12. 

    图 13  多次波提取前后剖面对比

    Figure 13. 

    图 14  研究区浅地层剖面测线反射系数属性体(上)及等值线图(下)

    Figure 14. 

    图 15  测线反射系数(a)与RMS属性(b)对比图

    Figure 15. 

    图 16  研究区实测表层沉积物类型及浅地层剖面区段振幅属性对比

    Figure 16. 

    图 17  根据浅地层剖面RMS振幅属性反演的海底表层沉积物类型

    Figure 17. 

  • [1]

    Schiermeier Q. Deep-sea sub aims to get to the bottom of a muddy issue[J]. Nature, 2003, 423(6939):469.

    [2]

    黄泽鹏, 许江, 胡毅, 等. 泉州海域海砂资源开采区选划与管理[J]. 海洋开发与管理, 2021, 38(3):9-13

    HUANG Zepeng, XU Jiang, HU Yi, et al. The selecting and management of sea sand resources in coastal areas of Quanzhou[J]. Ocean Development and Management, 2021, 38(3):9-13.

    [3]

    Shang X D, Zhao J H, Zhang H M. Obtaining high-resolution seabed topography and surface details by co-registration of side-scan sonar and multibeam echo sounder images[J]. Remote Sensing, 2019, 11(12):1496. doi: 10.3390/rs11121496

    [4]

    Schock S G, Leblanc L R, Mayer L A. Chirp subbottom profiler for quantitative sediment analysis[J]. Geophysics, 1989, 54(4):445-450. doi: 10.1190/1.1442670

    [5]

    孟珊, 房景辉, 蒋增杰, 等. 双齿围沙蚕对潮间带不同类型底质选择行为的研究[J]. 渔业科学进展, 2020, 41(4):110-116

    MENG Shan, FANG Jinghui, JIANG Zengjie, et al. Experimental study of the choice behavior of Perinereis aibuhitensis Grube among different sediment types[J]. Progress in Fishery Sciences, 2020, 41(4):110-116.

    [6]

    陈炜, 邝晗宇, 蔡梦雅, 等. 基于SonarWiz的多波束声呐图像智能底质分类技术研究[J]. 海洋测绘, 2022, 42(1):41-45 doi: 10.3969/j.issn.1671-3044.2022.01.009

    CHEN Wei, KUANG Hanyu, CAI Mengya, et al. Research on intelligent seabed sediment classification technology of multibeam sonar image based on Sonarwiz[J]. Hydrographic Surveying and Charting, 2022, 42(1):41-45. doi: 10.3969/j.issn.1671-3044.2022.01.009

    [7]

    何林帮. 基于多波束和浅剖的海底浅表层沉积物分类关键问题研究[J]. 测绘学报, 2016, 45(12):1498-1512

    HE Linbang. Research on key issues of sediment classification for seabed and sub-bottom based on multi-beam and sub-bottom profile echo intensity[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12):1498-1512.

    [8]

    朱正任. 基于多波束海底反向散射强度的底质分类研究[D]. 山东科技大学, 2021

    ZHU Zhengren. Research on seabed sediment classification using multibeam backscatter intensity[D]. Shandong University of Science and Technology, 2021.

    [9]

    Fonseca L, Mayer L. Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data[J]. Marine Geophysical Researches, 2007, 28(2):119-126. doi: 10.1007/s11001-007-9019-4

    [10]

    Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1):90-105.

    [11]

    唐秋华, 纪雪, 丁继胜, 等. 多波束声学底质分类研究进展与展望[J]. 海洋科学进展, 2019, 37(1):1-10 doi: 10.3969/j.issn.1671-6647.2019.01.001

    TANG Qiuhua, JI Xue, DING Jisheng, et al. Research progress and prospect of acoustic seabed classification using multibeam echo sounder[J]. Advances in Marine Science, 2019, 37(1):1-10. doi: 10.3969/j.issn.1671-6647.2019.01.001

    [12]

    Diesing M, Mitchell P, Stephens D. Image-based seabed classification: what can we learn from terrestrial remote sensing?[J]. ICES Journal of Marine Science, 2016, 73(10):2425-2441. doi: 10.1093/icesjms/fsw118

    [13]

    陶春辉. 海底沉积物声学原位测试和特性研究[D]. 浙江大学博士学位论文, 2005

    TAO Chunhui. In situ acoustic experiment and properties study in marine sediments[D]. Doctor Dissertation of Zhejiang University, 2005.

    [14]

    Yan J, Meng J X, Zhao J H. Real-time bottom tracking using side scan sonar data through one-dimensional convolutional neural networks[J]. Remote Sensing, 2020, 12(1):37.

    [15]

    Alevizos E, Snellen M, Simons D, et al. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization[J]. Marine Geophysical Research, 2018, 39(1-2):289-306. doi: 10.1007/s11001-017-9325-4

    [16]

    Cukur D, Um I K, Chun J H, et al. A multi-factor approach for process-based seabed characterization: example from the northeastern continental margin of the Korean peninsula (East Sea)[J]. Geo-Marine Letters, 2018, 38(4):323-339. doi: 10.1007/s00367-018-0537-7

    [17]

    黄必桂, 李家钢, 周庆杰, 等. 基于浅地层剖面的海底浅表层沉积物物理性质参数反演技术研究: 以渤海海底管线路由区为例[J]. 海洋学报, 2022, 44(9):156-164

    HUANG Bigui, LI Jiagang, ZHOU Qingjie, et al. Research on inversion technology of physical properties parameters of seafloor sediments based on sub-bottom profile: Taking the Bohai sea submarine pipeline route as an example[J]. Acta Oceanologica Sinica, 2022, 44(9):156-164.

    [18]

    陈静, 吕修亚, 陈亮, 等. 基于Chirp数据反演琼州海峡海底沉积物物性[J]. 热带地理, 2017, 37(6):874-879

    CHEN Jing, LV Xiuya, CHEN Liang, et al. Physical properties of the seabed inversed by chirp data in the Qiongzhou strait[J]. Tropical Geography, 2017, 37(6):874-879.

    [19]

    Schock S G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4):1200-1217. doi: 10.1109/JOE.2004.841421

    [20]

    Schock S G. Remote estimates of physical and acoustic sediment properties in the South China Sea using chirp sonar data and the Biot model[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4):1218-1230. doi: 10.1109/JOE.2004.842253

    [21]

    Zheng H B, Yan P, Chen J, et al. Seabed sediment classification in the northern South China Sea using inversion method[J]. Applied Ocean Research, 2013, 39:131-136. doi: 10.1016/j.apor.2012.11.002

    [22]

    Yegireddi S, Thomas N. Segmentation and classification of shallow subbottom acoustic data, using image processing and neural networks[J]. Marine Geophysical Research, 2014, 35(2):149-156. doi: 10.1007/s11001-014-9217-9

    [23]

    陈佳兵, 吴自银, 赵荻能, 等. 基于粒子群优化算法的PSO-BP海底声学底质分类方法[J]. 海洋学报, 2017, 39(9):51-57

    CHEN Jiabing, WU Ziyin, ZHAO Dineng, et al. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms[J]. Acta Oceanologica Sinica, 2017, 39(9):51-57.

    [24]

    孙英, 黄文盛. 浙江海岸的淤涨及其泥沙来源[J]. 东海海洋, 1984(4):34-42

    SUN Ying, HUANG Wensheng. The siltation process and silt sources of the Zhejiang coast[J]. Donghai Marine Science, 1984(4):34-42.

    [25]

    梁小龙, 杨守业, 印萍, 等. 黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素[J]. 海洋地质与第四纪地质, 2015, 35(6):1-15 doi: 10.16562/j.cnki.0256-1492.2015.06.001

    LIANG Xiaolong, YANG Shouye, YIN Ping, et al. Distribution of clay mineral assemblages in the rivers entering Yellow Sea and East China Sea and the muddy shelve deposits and control factors[J]. Marine Geology & Quaternary Geology, 2015, 35(6):1-15. doi: 10.16562/j.cnki.0256-1492.2015.06.001

    [26]

    胡日军, 吴建政, 朱龙海, 等. 东海舟山群岛海域表层沉积物运移特性[J]. 中国海洋大学学报, 2009, 39(3):495-500,442

    HU Rijun, WU Jianzheng, ZHU Longhai, et al. Characteristic of surface sediment transport in Zhoushan archipelago sea area, East China Sea[J]. Periodical of Ocean University of China, 2009, 39(3):495-500,442.

    [27]

    沈昆明, 蒋玉波, 李安龙, 等. 舟山群岛表层沉积物粒度和黏土矿物分布特征与物源指示[J]. 海岸工程, 2020, 39(1):24-33

    SHEN Kunming, JIANG Yubo, LI Anlong, et al. Distributions of grain size and clay minerals in the surface sediments of Zhoushan Islands and their material source indication[J]. Coastal Engineering, 2020, 39(1):24-33.

    [28]

    朱祖扬, 王东, 周建平, 等. 基于非饱和Biot-Stoll模型的海底沉积物介质声频散特性研究[J]. 地球物理学报, 2012, 55(1):180-188 doi: 10.6038/j.issn.0001-5733.2012.01.017

    ZHU Zuyang, WANG Dong, ZHOU Jianping, et al. Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model[J]. Chinese Journal of Geophysics, 2012, 55(1):180-188. doi: 10.6038/j.issn.0001-5733.2012.01.017

    [29]

    Blott S J, Pye K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures[J]. Sedimentology, 2012, 59(7):2071-2096. doi: 10.1111/j.1365-3091.2012.01335.x

    [30]

    Kim G Y, Richardson M D, Bibee D L, et al. Sediment types determination using acoustic techniques in the northeastern Gulf of Mexico[J]. Geosciences Journal, 2004, 8(1):95-103. doi: 10.1007/BF02910282

    [31]

    Zheng H B, Yan P, Chen J. The discussion of acoustic seabed sediment classification methods[J]. Applied Mechanics and Materials, 2012, 226-228:1811-1816. doi: 10.4028/www.scientific.net/AMM.226-228.1811

    [32]

    Herkül K, Peterson A, Paekivi S. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows[J]. Estuarine, Coastal and Shelf Science, 2017, 192:57-71. doi: 10.1016/j.ecss.2017.04.026

    [33]

    唐保根. 东海西部海域现代沉积环境分区及沉积特征的初步研究[J]. 海洋地质与第四纪地质, 1992, 3(4):29-40 doi: 10.16562/j.cnki.0256-1492.1992.04.004

    TANG Baogen. Preliminary study on the modern sedimentary environment and sedimentary characteristics in the western part of the East China Sea[J]. Marine Geology & Quaternary Geology, 1992, 3(4):29-40. doi: 10.16562/j.cnki.0256-1492.1992.04.004

    [34]

    周庆杰, 李西双, 刘乐军, 等. 基于Chirp数据和Biot-Stoll模型反演南海北部陆坡海底表层沉积物物理性质[J]. 海洋学报, 2020, 42(3):72-82

    ZHOU Qingjie, LI Xishuang, LIU Lejun, et al. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea[J]. Acta Oceanologica Sinica, 2020, 42(3):72-82.

    [35]

    李铭珂. 浅地层剖面数据处理与海底底质分类研究[D]. 天津大学硕士学位论文, 2021

    LI Mingke. Research on sub-bottom profile data processing and seabed sediment classification[D]. Master Dissertation of Tianjin University, 2021.

  • 加载中

(17)

计量
  • 文章访问数:  539
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2023-05-04
修回日期:  2023-08-31
刊出日期:  2023-12-28

目录