塔里木盆地西北地区震旦系苏盖特布拉克组潮坪相碎屑岩成岩作用与成岩演化研究

郑潇宇, 张翔, 李建, 田景春, 彭明鸿, 张琪沅, 张悦. 2023. 塔里木盆地西北地区震旦系苏盖特布拉克组潮坪相碎屑岩成岩作用与成岩演化研究. 沉积与特提斯地质, 43(3): 530-541. doi: 10.19826/j.cnki.1009-3850.2022.04017
引用本文: 郑潇宇, 张翔, 李建, 田景春, 彭明鸿, 张琪沅, 张悦. 2023. 塔里木盆地西北地区震旦系苏盖特布拉克组潮坪相碎屑岩成岩作用与成岩演化研究. 沉积与特提斯地质, 43(3): 530-541. doi: 10.19826/j.cnki.1009-3850.2022.04017
ZHENG Xiaoyu, ZHANG Xiang, LI Jian, TIAN Jingchun, PENG Minghong, ZHANG Qiyuan, ZHANG Yue. 2023. Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin. Sedimentary Geology and Tethyan Geology, 43(3): 530-541. doi: 10.19826/j.cnki.1009-3850.2022.04017
Citation: ZHENG Xiaoyu, ZHANG Xiang, LI Jian, TIAN Jingchun, PENG Minghong, ZHANG Qiyuan, ZHANG Yue. 2023. Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin. Sedimentary Geology and Tethyan Geology, 43(3): 530-541. doi: 10.19826/j.cnki.1009-3850.2022.04017

塔里木盆地西北地区震旦系苏盖特布拉克组潮坪相碎屑岩成岩作用与成岩演化研究

  • 基金项目: 中国石油化工股份有限公司科技开发项目(P17046-4)
详细信息
    作者简介: 郑潇宇(1996—),女,硕士研究生,主要从事储层沉积学方面的研究。E-mail:494953459@qq.com
    通讯作者: 张翔(1978—),男,博士,副教授,从事储层沉积学教学和研究工作。E-mail:zhangxiang06@cdut.edu.cn
  • 中图分类号: P618.13

Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin

More Information
  • 塔里木盆地西北地区苏盖特布拉克组发育一套潮坪相沉积,是该层系油气勘探的主要目标。基于什艾日克剖面、奇格布拉克剖面、肖尔布拉克剖面的地质测量,采用薄片鉴定、阴极发光、扫描电镜、流体包裹体测温及黏土矿物X衍射等分析手段开展海相碎屑岩成岩作用和成岩演化研究,为塔里木盆地苏盖特布拉克组进一步开展油气勘探部署和甜点储层预测提供地质依据。结果表明:(1)研究区苏盖特布拉克组发育潮坪沉积环境的砂体,砂岩类型以岩屑石英砂岩、岩屑砂岩为主,偶见长石岩屑砂岩,成分成熟度和结构成熟度中等;(2)苏盖特布拉克组砂岩经历了压实(溶)作用、胶结作用、溶蚀作用及交代作用等成岩作用,压实作用是造成储层致密的直接原因,钙质胶结和硅质胶结是储层致密化的根本因素;(3)苏盖特布拉克组砂岩的成岩演化阶段已达到中成岩B期,成岩演化序列为:压实作用/自生黏土矿物(绿泥石)环边—第一期长石、岩屑溶蚀作用—第一期硅质胶结—第一期泥微晶方解石胶结/压溶作用/黏土矿物的伊利化—第二次硅质胶结/第二期铁方解石胶结—钙质胶结物溶蚀。据此建立的成岩演化模式为塔里木盆地超深层致密砂岩中甜点储层预测提供可靠的地质依据。

  • 加载中
  • 图 1  塔西北地区地质简图(A)(据何金有,2010修改)与苏盖特布拉克组地层对比图(B)

    Figure 1. 

    图 2  塔西北地区苏盖特布拉克组砂岩岩石学微观特征

    Figure 2. 

    图 3  塔西北地区苏盖特布拉克组砂岩成岩作用微观特征

    Figure 3. 

    图 4  塔西北地区苏盖特布拉克组硅质胶结物中流体包裹体显微照片

    Figure 4. 

    图 5  塔西北地区苏盖特布拉克组成岩演化序列图

    Figure 5. 

    表 1  塔西北地区苏盖特布拉克组砂岩黏土矿物X衍射分析结果

    Table 1.  X-ray diffraction analysis content of sandstone clay minerals of the Sugetbrak Formation in the Northwest of Tarim

    样品编号I(%)K(%)C(%)I/S(%)I/S(S%)
    SGT-S37905165
    SGT-S173010175
    SGT-S168006145
    SARK-38-S164019175
    SGT-S238405115
    SGT-S67606185
    SARK-56-S146036185
    SARK-21-S18900115
    SARK-60-S17115595
    SARK-14-S19000105
    注:I—伊利石,K—高岭石,C—绿泥石,I/S—伊蒙混层,I/S(S%)—伊蒙混层比(蒙脱石/%)。
    下载: 导出CSV

    表 2  塔西北地区苏盖特布拉克组两期硅质胶结物流体包裹体显微测温结果

    Table 2.  Microscopic temperature measurement results of fluid inclusions in the Sugetbrak Formation in the northwest area of the Tarim Basin

    样品编号宿主矿物产状形态大小/μm均一温度/℃包裹体类型
    SARK-31-S1-1Ⅰ级石英次生加大边散布椭圆形3.975.0气液两相包裹体
    SARK-81-S1-4Ⅰ级石英次生加大边散布不规则形4.175.5气液两相包裹体
    SARK-31-S1-2Ⅰ级石英次生加大边散布椭圆形3.777.0气液两相包裹体
    SGT-S5-1Ⅰ级石英次生加大边散布椭圆形5.291.0气液两相包裹体
    SARK-81-S1-1Ⅰ级石英次生加大边条带状长条形4.3100.0气液两相包裹体
    SGT-S1-2Ⅰ级石英次生加大边散布椭圆形4.3101.0气液两相包裹体
    SGT-S5-2Ⅰ级石英次生加大边散布不规则形3.4104.2纯液相包裹体
    SGT-S1-1Ⅰ级石英次生加大边散布长条形3.6105.1气液两相包裹体
    SARK-58-S1-4Ⅰ级石英次生加大边散布椭圆形2.6106.0气液两相包裹体
    SGT-S5-3Ⅰ级石英次生加大边散布椭圆形3.7106.0气液两相包裹体
    SARK-58-S1-1Ⅰ级石英次生加大边散布椭圆形3.0107.0纯液相包裹体
    SARK-81-S1-5Ⅰ级石英次生加大边散布椭圆形4.0108.6气液两相包裹体
    SARK-81-S1-6Ⅰ级石英次生加大边散布椭圆形2.1111.7气液两相包裹体
    SARK-31-S1-3Ⅰ级石英次生加大边散布不规则形2.8113.4气液两相包裹体
    SGT-S1-3Ⅰ级石英次生加大边条带状椭圆形2.7119.0纯液相包裹体
    SGT-S1-4Ⅱ级石英次生加大边条带状长条形3.0123.4气液两相包裹体
    SGT-S1-5Ⅱ级石英次生加大边散布椭圆形4.0131.0纯液相包裹体
    SARK-58-S1-3Ⅱ级石英次生加大边散布长条形3.7136.9气液两相包裹体
    SGT-S31-1Ⅱ级石英次生加大边散布椭圆形4.4146.0气液两相包裹体
    SGT-S31-3Ⅱ级石英次生加大边散布不规则形4.2149.9气液两相包裹体
    SARK-58-S1-2Ⅱ级石英次生加大边散布椭圆形3.5150.0气液两相包裹体
    SARK-81-S1-2Ⅱ级石英次生加大边条带状椭圆形4.5154.7气液两相包裹体
    SGT-S31-2Ⅱ级石英次生加大边条带状椭圆形3.9155.0气液两相包裹体
    SARK-58-S1-5Ⅱ级石英次生加大边散布椭圆形3.1157.3纯液相包裹体
    SARK-81-S1-3Ⅱ级石英次生加大边条带状椭圆形3.4160.0气液两相包裹体
    下载: 导出CSV
  • [1]

    陈汉林, 黄伟康, 李勇, 等, 2020. 塔里木盆地西北缘震旦系沉积物源分析及对盆地属性的制约[J]. 石油实验地质, 42(05): 756-766 doi: 10.11781/sysydz202005756

    CHEN H L, HUANG W K, LI Y, et al. , 2020. Provenance analysis of Sinian sediments on the northwestern margin of Tarim Basin and its restriction on basin types[J]. Petroleum Geology & Experiment, 42(5): 756-766. doi: 10.11781/sysydz202005756

    [2]

    邓浩博, 2019. 塔里木盆地北部上震旦统奇格布拉克组沉积相及储层特征研究[D]. 成都理工大学.

    Deng H B, 2019. Study on sedimentary facies and reservoir characteristics of the Upper Sinian qigebulake formation in the northern Tarim Basin[D]. Chengdu University Of Technology.

    [3]

    郭刚, 许应石, 欧健, 2014. 新疆塔里木盆地西南缘盆山结合带新生代盆地演化与青藏高原北缘隆升的关系[J]. 西北地质, 47(4): 13-23 doi: 10.3969/j.issn.1009-6248.2014.04.003

    GUO G, XU Y S, OU J, 2014. Evolution of Cenozoic Basin in Basin-range Junction Belt of Southwestern Tarim Basin and Its Relation with Uplift of North Qinghai-Tibet Plateau[J]. Northwestern Geology, 47(4): 13-23. doi: 10.3969/j.issn.1009-6248.2014.04.003

    [4]

    高振家, 王务严, 彭昌文, 等, 1987. 新疆震旦系[M]. 乌鲁木齐: 新疆人民出版社.

    Gao Z J, Wang W Y, Peng C W, et al. , 1987. Sinian in Xinjiang[M]. Urumqi: Volksverlag Xinjiang.

    [5]

    黄思静, 孙伟, 黄培培, 等, 2009. 鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响[J]. 矿物岩石, 29(4): 25−32.

    Huang S J, Sun W, Huang P P, et al. , 2009. Formation mechanism of authigenic illite in clastic rocks of Taiyuan Formation in eastern Ordos Basin and its influence on reservoir formation[J]. Journal of Mineralogy and Petrology, 29(4):25-32.

    [6]

    贾承造, 庞雄奇, 2015. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 36(12): 1457-1469 doi: 10.7623/syxb201512001

    JIA C Z, PANG X Q, 2015. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 36(12): 1457-1469. doi: 10.7623/syxb201512001

    [7]

    姜海健, 陈强路, 杨鑫, 等, 2017. 塔里木盆地新元古代裂谷盆地层序样式[J]. 地质学报, 91(3): 588-604 doi: 10.3969/j.issn.0001-5717.2017.03.007

    JIANG H J, CHEN Q L, YANG X, et al. , 2017. The Style of Sequence Stratigraphy of Neoproterozoic Rift Basin in the Tarim Basin[J]. Acta Geologica Sinica, 91(3): 588-604. doi: 10.3969/j.issn.0001-5717.2017.03.007

    [8]

    康建威, 牟传龙, 周恳恳, 等, 2016. 塔里木盆地北缘阿克苏地区震旦系露头层序地层研究[J]. 沉积与特提斯地质, 36(2): 47-54. doi: 10.3969/j.issn.1009-3850.2016.02.006

    [9]

    KANG J W, MU C L, ZHOU K K, et al. , 2016. Sequence stratigraphic analysis of the Sinian strata in the Aksu region, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 36(2): 47-54.

    [10]

    李慧, 施辉, 吴瑾, 2016. 青藏高原隆升对柴西南区岩性油藏形成的影响作用分析[J]. 科学技术与工程, 16(12): 20−26.

    Li H, Shi Hi, Wu J, 2016. The impact analysis of Tibetan Plateau uplifting to the forming of lithologicreservoirs in southwestern Qaidam Basin[J]. Science Technology and Engineering, 16(12).

    [11]

    李慧, 吴瑾, 于保禄, 2019. 柴达木盆地西南区油气充注与青藏高原隆升耦合关系的包裹体证据[J]. 科学技术与工程, 19(6): 23-31. doi: 10.3969/j.issn.1671-1815.2019.06.005

    [12]

    LI H, WU J, YU B L, 2019. The evidence from fluid inclusions in the reservoirs of southwestern Qaidam illustrating the relationship between the uplifting activities of Tibetan Plateau and hydrocarbon accumulations[J]. Science Technology and Engineering, 19(6): 23-31

    [13]

    李丕龙, 冯建辉, 樊太亮, 等, 2010. 塔里木盆地构造沉积于成藏[M]. 北京: 地质出版社.

    Li P L, Feng J H, Fan T L, et al. , 2010. Tectonic sedimentation and reservoir formation in tarim basin[M]. Beijing: Geology Press.

    [14]

    刘若涵, 何碧竹, 焦存礼, 等, 2020. 新疆阿克苏地区新元古代沉积特征对裂谷发育过程的指示[J]. 岩石学报, 36(10): 3225−3242

    Liu R H, He B Z, Jiao C L, et al. , 2020. The indication of Neoproterozoic sedimentary characteristics to rift development process in Aksu area, Xinjiang. Acta Petrologica Sinica, 36(10): 3225−3242.

    [15]

    刘显凡, 孙传敏, 2013. 矿物学简明教程(第二版)[M]. 北京: 地质出版社.

    Liu X F, Sun C M, 2013. Concise Course of Mineralogy (Second Edition)[M]. Beijing: Geology Press.

    [16]

    马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 49(1): 1-17 doi: 10.11698/PED.2022.01.01

    MA Y S, CAI X Y, YUN L, et al. , 2022. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 49(1): 1-17. doi: 10.11698/PED.2022.01.01

    [17]

    石开波, 刘波, 田景春, 等, 2016. 塔里木盆地震旦纪沉积特征及岩相古地理[J]. 石油学报, 37(11): 1343-1360 doi: 10.7623/syxb201611003

    SHI K B, LIU B, TIAN J C, et al. , 2016. Sedimentary characteristics and lithofacies paleogeography of Sinian in Tarim Basin[J]. Acta Petrolei Sinica, 37(11): 1343-1360. doi: 10.7623/syxb201611003

    [18]

    田建锋, 高永利, 张蓬勃, 等, 2013. 鄂尔多斯盆地合水地区长7致密油储层伊利石成因[J]. 石油与天然气地质, 34(5): 700-707. doi: 10.11743/ogg20130518

    [19]

    TIAN J F, GAO Y L, ZHANG P B, et al. , 2013. Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin[J]. Oil & Gas Geology, 34(5): 700-707.

    [20]

    田雷, 张虎权, 刘军, 等, 2020. 塔里木盆地西南部南华纪—震旦纪裂谷分布及原型盆地演化[J]. 石油勘探与开发, 47(6): 1122-1133. doi: 10.11698/PED.2020.06.06

    [21]

    TIAN L, ZHANG H Q, LIU J, et al. , 2020. Distribution of Nanhua-Sinian rifts and proto-type basin evolution in southwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 47(6): 1122-1133.

    [22]

    吴福志, 刘东娜, 赵峰华, 等, 2021. 塔里木盆地西北缘苏盖特布拉克组沉积环境及构造背景研究[J]. 矿物岩石地球化学通报, 40(2): 478-490

    WU F Z, LIU D N, ZHAO F H, et al. , 2021. Study on Sedimentary Environment and Tectonic Background of Sugaitebulak Formation in the Northwestern Margin of Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 478-490.

    [23]

    吴鸿翔, 黄伟康, 励音骐, 等, 2020. 塔里木地块西北缘震旦系发现二叠纪基性岩床侵入事件[J]. 地质学报, 94(6): 1869-1882 doi: 10.3969/j.issn.0001-5717.2020.06.015

    WU H X, HUANG W K, LI Y Q, et al. , 2020. Discovery of Permian mafic sills intrusion event in the Sinian system, Northwest Tarim block[J]. Acta Geologica Sinica, 94(6): 1869-1882. doi: 10.3969/j.issn.0001-5717.2020.06.015

    [24]

    王志宏, 丁伟铭, 李剑, 等, 2020. 塔里木盆地西缘下寒武统玉尔吐斯组沉积地球化学及有机质富集机制研究[J]. 北京大学学报(自然科学版), 56(4): 667-678

    WANG Z H, DING W M, LI J, et al. , 2020. Study on Sedimentary Geochemistry and Organic Matter Enrichment Mechanism of Lower Cambrian Yuertus Formation in the Western Margin of Tarim Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 56(4): 667-678.

    [25]

    吴林, 管树巍, 冯兴强, 等, 2020. 塔里木盆地及周缘南华系和震旦系划分对比研究[J]. 岩石学报, 36(11): 3427−3441

    Wu L, Guan S W, Feng X Q, et al. , 2020. Discussion on stratigraphic division of the Nanhuan and Sinian of the Tarim Basin and its surrounding regions. Acta Petrologica Sinica, 36(11): 3427−3441.

    [26]

    姚春彦, 2010. 新疆阿克苏—乌什地区晚埃迪卡拉纪—早寒武世地层地球化学研究[D]. 南京大学.

    Yao C Y, 2010. Geochemistry of Late Ediacaran Early Cambrian Strata in Aksu Wushi Area, Xinjiang[D]. Nanjing University.

    [27]

    杨海军, 陈永权, 潘文庆, 等, 2021. 塔里木盆地南华纪—中寒武世构造沉积演化及其盐下勘探选区意义[J]. 中国石油勘探, 26(4): 84-98 doi: 10.3969/j.issn.1672-7703.2021.04.007

    YANG H J, Chen Y Q, PAN W Q, et al. , 2021. Study on tectonic and sedimentary evolution during the Nanhua-Middle Cambrian and its significance for subsalt exploration, Tarim Basin [J]. China Petroleum Exploration, 26(4): 84-98. doi: 10.3969/j.issn.1672-7703.2021.04.007

    [28]

    闫磊, 朱光有, 王珊, 等, 2021. 塔里木盆地震旦系—寒武系万米超深层天然气成藏条件与有利区带优选[J]. 石油学报, 42(11): 1446-1457 doi: 10.7623/syxb202111004

    YAN L, ZHU G Y, WANG S, et al. , 2021. Accmulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian-Cambrian in Tarim Basin[J]. Acta Petrolei Sinica, 42(11): 1446-1457. doi: 10.7623/syxb202111004

    [29]

    杨沛, 刘洪涛, 李宁, 等, 2021. 塔里木油田超深井钻井设计及优化技术——以亚洲最深井轮探1井为例[J]. 中国石油勘探, 26(3): 126-135 doi: 10.3969/j.issn.1672-7703.2021.03.012

    YANG P, LIU H T, LI N, et al. , 2021. Drilling design and optimization technology of ultra-deep wells in the Tarim Oilfield: a case study of Well Luntan 1, the deepest well in Asia[J]. China Petroleum Exploration, 26(3): 126-135. doi: 10.3969/j.issn.1672-7703.2021.03.012

    [30]

    钟广法, 林社卿, 侯方浩, 1996. 泌阳凹陷核三下亚段砂岩成岩作用及储集性[J]. 矿物岩石, (2): 40-46

    ZHONG G F, LING S Q, HOU F H, 1996. Diagenesis and its reservoir quality for sandstones of LOWER HE-3 Member(paleogene)east Biyang Depression, Henan, China[J]. Journal of Mineralogy and Petrology, 16(2): 40-46.

    [31]

    邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 41(3): 278-293 doi: 10.11698/PED.2014.03.03

    ZOU C N, DU J H, XU C C, et al. , 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 278-293. doi: 10.11698/PED.2014.03.03

    [32]

    张霞, 林春明, 陈召佑, 2011. 鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征[J]. 地质学报, 85(10): 1659-1671

    ZHANG X, LIN C M, CHEN Z Y, 2011. The characteristics of chlorite minerals from Upper Triassic Yanchang Formation in Zhenjing area, Ordos Basin[J]. Acta Geologica Sinica, 85(10): 1659-1671.

    [33]

    张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J]. 地球科学(中国地质大学学报), (5): 583−597

    Zhang K X, Wang G C, Chen F N, et al. , 2007. Coupling between the Uplift of Qinghai−Tibet Plateau and Distribution of Basins of Paleogene−Neogene. Earth Science, 32(5): 583−597.

    [34]

    周肖贝, 李江海, 王洪浩, 等, 2015. 塔里木盆地南华纪—震旦纪盆地类型及早期成盆构造背景[J]. 地学前缘, 22(3): 290-298

    ZHOU X B, LI J H, WANG H H, et al. , 2015. The type of prototypic basin and tectonic setting of Tarim Basin formation from Nanhua to Sinian[J]. Earth Science Frontiers, (3): 290-298.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  600
  • PDF下载数:  103
  • 施引文献:  0
出版历程
收稿日期:  2021-10-11
修回日期:  2022-04-27
刊出日期:  2023-09-30

目录