Petrogenesis of granite aplite in the Lijiagou lithium polymetallic ore district in western Sichuan: constraints from geochemistry, zircon U-Pb geochronology and Hf isotope
-
摘要: 李家沟锂多金属矿床位于松潘–甘孜褶皱造山带东南缘,是近年来在区内发现的超大型锂多金属矿床,矿区内广泛发育花岗细晶岩脉。本文对花岗细晶岩脉进行了全岩地球化学测试、锆石U-Pb定年和Hf同位素分析,探讨其岩石成因及地质意义。花岗细晶岩锆石U-Pb加权平均年龄为200±2 Ma,属晚三叠世—早侏罗世。岩石具高硅(w(SiO2)=73.27%~75.14%)、富铝(w(Al2O3)=14.8%~15.25%)、富碱(w(Na2O+K2O)=4.86%~8.08%)、贫钙(w(CaO)=0.45%~1.45%)的特征,A/CNK值均大于1.1,属中钾–高钾钙碱性强过铝质S型花岗岩。微量元素表现出Rb、Th、U、K的正异常和Ba、Sr、P、Ti相对负异常。稀土元素显示轻稀土富集、重稀土亏损及弱的负Eu异常(δEu=0.68~0.81)。岩石中锆石εHf(t)值和对应的二阶模式年龄(tDM2)较为均一,分别为-6.36~-3.39和1424~1616 Ma。研究表明,花岗细晶岩脉形成的构造背景为松潘–甘孜洋(古特提斯支洋)闭合后的后碰撞造山阶段,源岩为古老地壳变杂砂岩。结合前人研究成果,认为锂矿化花岗伟晶岩与花岗细晶岩为同一源区不同源岩(变泥质岩和变杂砂岩)部分熔融的产物。Abstract: The Super-large Lijiagou lithium polymetallic deposit is a newly discovered deposit in the southeastern margin of Songpan-ganzi Fold Orogenic Belt and has widespread outcrops of granite aplite veins. whole-rock geochemical analysis, zircon U-Pb dating and zircon Hf isotopic analysis for granite aplite are performed to explore its petrogenesis and geological significance. Zircons yielded weighted mean U-Pb age of 200±2 Ma for granite aplite, indicating that it was emplaced in the Late Triassic to Early Jurassic. The rocks exhibit high SiO2 concentration (73.27%~75.14%), high Al2O3 concentration (14.8%~15.25%), high total alkali concentration (4.86%~8.08%) and low CaO concentration (0.45%~1.45%) with A/CNK ratios >1.1, which are defined as median-K to high-K calc-alkaline strongly peraluminous S-type granites. Trace elements of the granite aplite show positive anomalies for Rb, Th, U, K and relative negative anomalies for Ba, Sr, P, Ti. The granite aplite display enrichment of LREE, depletion of HREE, and weak negative Eu anomalies (δEu=0.68~0.81). zircon εHf(t) values range from -6.36 to -3.39 with tDM2 varying from 1424 Ma to 1616 Ma. The study shows that the granite aplite veins were formed in the post-collision orogenic stage after the closure of the Songpan-Ganzi ocean (a branch of the Paleo-Tethys Ocean), and the source rocks are the ancient crustal meta-greywacke. Combined with the previous research results, it is considered that the lithium mineralized granitic pegmatites and the granite aplites are the products of partial melting of different source rocks (meta-argillite vs meta-graywacke) in the same source area.
-
-
Altherr R,Siebel W,2002. I-type plutonism in a continental back-arc setting:Miocene granitoids and monzonites from the central Aegean Sea,Greece [J]. Contributions to Mineralogy & Petrology,143(4):397-415.
Bouvier A,Vervoort J D,Patchett P J,2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters,273(1-2):48-57.
Boynton W V,1984. Cosmochemistry of the rare earth elements:Meteorite studies [J]. Developments in Geochemistry,2:63-114.
Brown G C,1982. Calc−alkaline intrusive rocks:Their diversity,evolution and relation to volcanic arcs. In:Thorpe R S,ed. Andesites:Orogenic Andesites and Related Rocks [M]. New York:John Wiley and Sons,437−461.
De Sigoyer J,Vanderhaeghe O,Duchene S,2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary−orogenic wedge in a context of slab retreat accommodated by tear faulting,Eastern Tibetan plateau,China [J]. Journal of Asian Earth Sciences:88:192−216.
邓运,费光春,李剑,等,2018. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究[J]. 矿物岩石,38(3):40−47
Deng Y,Fei G C,Li J,et al. ,2018. Study of C−H−O isotopes and geochronlogy pf the Lijiagou pegmatite spodumene deposit in Sichuan Province. Journal of Mineralogy and Petrology,38(3):40−47. (in Chinese with English abstract)
Deschamps F,Duchěne S,De Sigoyer J,et al. ,2017. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China) [J]. Journal of Petrology,58(11):2221-2256.
Fei G C,Li B H,Yang J Y,et al. ,2018. Geology,fluid inclusion characteristics and H-O-C isotopes of large Lijiagou pegmatite Spodumene deposit in Songpan-Garze fold belt,Eastern Tibet:Implications for ore genesis [J]. Resource Geology,68(1):37-50.
Fei G C,Menuge J F,Li Y Q,et al. ,2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt,West Sichuan,China:Evidence from geochemistry,zircon,cassiterite and coltan U-Pb geochronology and Hf isotopic compositions [J]. Lithos,364-365:105555.
费光春,杨峥,杨继忆,等,2020. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定:来自LA-MC-ICP-MS锡石U-Pb定年的证据[J]. 地质学报,94(3):836-849
Fei G C,Yang Z,Yang J Y,et al. ,2020. New precise timing constraint for the Dangba granitic pegmatite type rare- metal deposit,Markam,Sichuan Province,evidence from cassiterite LA-MC-ICP-MS U-Pb dating[J]. Acta Geologica Sinica,94(3):836-849. (in Chinese with English abstract)
Griffin W L,Pearson N J,Belousova E,et al. ,2000. The Hf isotope composition of cratonic mantle:LAM−MC−ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta[J],64(1):133−147.
古城会,2014. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛,29(1):59-65
Gu C H,2014. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Keeryin pegmatite field,Sichuan province[J]. Contributions to geology and mineral resources research,29(01):59-65. (in Chinese with English abstract)
He D,Dong Y,Zhang F,et al. ,2016. The 1.0 Ga S-type granite in the East Kunlun Orogen,Northern Tibetan Plateau:Implications for the Meso– to Neoproterozoic tectonic evolution [J]. Journal of Asian Earth Sciences,130(15):46-59.
侯可军,李延河,田有荣,2009. LA−MC−ICP−MS锆石微区原位U−Pb定年技术[J]. 矿床地质,28(4):481−492
Hou K J,Li Y H,Tian Y R. 2009. In situ U−Pb zircon dating using laser ablation−multi ion counting−ICP−MS [J]. Mineral Deposits,28(4):481−492. (in Chinese with English abstract)
Huang C,Wang H,Yang J. H,et al. ,2020. SA01 – a proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research,44:103-123.
Jung S,Pfänder J A,2007. Source composition and melting temperatures of orogenic granitoids:Constraints from CaO/Na2O,Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy,19(6):859-870.
Kaygusuz A,Siebel W,Şen C,Satir M,2008. Petrochemistry and petrology of I-type granitoids in an arc setting:The composite Torul pluton,Eastern Pontides,NE Turkey [J]. International Journal of Earth Sciences,97(4):739-764.
廖远安,姚学良,1992. 金川—过铝多阶段花岗岩体演化特征及其与成矿关系[J]. 矿物岩石,(1):12-22
Liao Y A,Yao X L,1992. Evolution feature and minerogenetic relations peraluminous granites from Jinchuan,Western Sichuan[J]. Mineralogy and Petrology,(1):12-22. (in Chinese with English abstract)
刘洪,张晖,李光明,等,2016. 藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因:来自地球化学和锆石U-Pb年代学的约束[J]. 北京大学学报(自然科学版),52(5):848-860
Liu H,Zhang H,Li G M,et al. ,2016. Petrogenesis of the Early Cretaceous Qingcaoshan Strongly Peraluminous S-Type Granitic Pluton,Southern Qiangtang,Northern Tibet:Constraints from Whole-Rock Geochemistry and Zircon U-Pb Geochronology[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,52(5):848-860. (in Chinese with English abstract)
Ludwig K R,2003. User’s Manual for isoplot 3.00:A Geochronological toolkit for Microsoft excel [M]. Berkeley:Berkeley Geochronology Center,1−70.
罗伟,杨波,古城会,等,2021. 川西金川县李家沟超大型锂辉石矿床的地质特征及找矿标志[J]. 四川有色金属(2):16−18.
Luo W,Yang B,Gu C H,et al. ,2021. The Geological Characteristics and ore indicators of Lijiagou Super−large Spodumene Deposit in Jinchuan County,Western Sichuan[J]. Sichuan Nonferrous Metas(2):16−18+21. (in Chinese with English abstract)
罗伟,彭静,金廷福,等,2022a. 川西可尔因地区斯曼错黑云母二长花岗岩成因及其地质意义[J]. 矿物岩石地球化学通报,41(3):526-539
Luo W,Peng J,Jin T F,et al. ,2022a. Petrogenesis and Geological Significance of the Simancuo Biotite Monzogranite in the Kereryin Area,Western Sichuan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,41(3):526-539. (in Chinese with English abstract)
罗伟,岳相元,周雄,等,2022b. 四川金川县列门地区土壤地球化学特征及找矿意义[J]. 矿产综合利用,(1):1-6
Luo W,Yue X Y,Zhou X,et al. ,2022b. Characteristics of soil geochemistry and its prospecting significance in Liemen Area,Jinchuan County,Sichuan[J]. Multipurpose Utilization of Mineral Resources,(1):1-6. (in Chinese with English abstract)
Maniar P D,Piccoli P M,1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,101(5),635–643.
McDonough W F,Sun S S,1995. The composition of the Earth [J]. Chemical Geology,120(3-4):223-253.
Middlemost E A K,1994. Naming materials in the magma/igneous rock system [J]. Earth−Science Reviews,37(3–4):215–224.
Morel M L A,Nebel O,Nebel-Jacobsen Y J,et al. ,2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology,255(1-2):231-235.
Pearce J A,Harris N B W,Tindle A G,1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal Petrology,25(4):956-983.
Rickwood P C,1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos,22(4):247-263.
Roger F,Jolivet M,Malavieille J,2010. The tectonic evolution of the Songpan-Garze (North Tibet) and adjacent areas from Proterozoic to Present:A synthesis [J]. Journal of Asian Earth Sciences,39(4):254-269.
Sláma J,Košler J,Condon D J,et al. ,2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis [J]. Chemical Geology,249(1-2):1-35.
Söderlund U,Patchett P J,Vervoort J D,et al. ,2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters,219(3-4):311-324.
Sylvester P J,1998. Post-collisional strongly peraluminous granites [J]. Lithos,45(1):29-44.
Thomas R,Davidson P,Beurlen H,2012. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology,106:55-73.
Watson E B,Harrison T M,2005. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science,308(5723):841-844.
Whalen J B,Currie K L,Chappell B W,1987. A-type granites:geochemical characteristics,discrimination and petrogenesis [J]. Contributions to Mineralogy & Petrology,95(4):407-419.
吴福元,李献华,郑永飞,等,2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,23(02):185-220
Wu F Y,Li X H,Zheng Y F,et al. ,2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica,23(2):185-220. (in Chinese with English abstract)
Wu Y B,Zheng Y F,2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin,49(15):1554-1569.
许家斌,费光春,覃立业,等,2020. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义[J]. 地质与勘探,56(2):346-358
Xu J B,Fei G C,Qin L Y,et al. ,2020. LA-MC-ICP-MS U-Pb dating of cassiterite from the Lijiagou pegmatite-type rare-metal deposit in the Ke’eryin orefield,Sichuan Province and its geological implication[J]. Geology and Exploration,56(2):346-358. (in Chinese with English abstract)
Xu Z Q,Fu X F,Wang R C,et al. ,2020. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt,East Tibet [J]. Lithos,354-355:105281.
许志琴,付小方,赵中宝,等,2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨[J]. 地球科学,44(05):1452-1463
Xu Z Q,Fu X F,Zhao Z B,et al. ,2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite-Type Lithium Deposits[J]. Earth Science,44(5):1452-1463. (in Chinese with English abstract)
许志琴,王汝成,赵中宝,等,2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报,92(6):1091-1106
Xu Z Q,Wang R C,Zhao Z B,et al. ,2018. On the Structural Backgrounds of the Large scale “Hard rock Type” Lithium Ore Belts in China[J]. Acta Geologica Sinica,92(6):1091-1106. (in Chinese with English abstract)
Yan Q G,Li J K,Li X J,et al. ,2020. Source of the Zhawulong granitic pegmatite−type lithium deposit in the Songpan−Ganzê orogenic belt,Western Sichuan,China:Constrants from Sr−Nd−Hf isotopes and petrochemistry[J]. Lithos,378−379(3).
杨宗让,2002. 川西松潘-甘孜弧前盆地的形成及演化[J]. 沉积与特提斯地质,(3):53-59
Yang Z R,2002. The formation and evolution of the Songpan-Garze fore-arc basin western Sichuan[J]. Sedimentary Geology and Tethyan Geology,(3):53-59. (in Chinese with English abstract)
Yuan C,Zhou M F,Sun M,et al. ,2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt,SW China:Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters,290(3–4):481−492.
Yuan H L, Gao S, Dai M N, et al., 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 247: 100-118.
张旗,潘国强,李承东,等,2007. 花岗岩混合问题:与玄武岩对比的启示——关于花岗岩研究的思考之一[J]. 岩石学报,23(5):1141-1152
Zhang Q,Pan G Q,Li C D,et al. ,2007. Granitic magma mixing versus basaltic magma mixing:New viewpoints on granitic magma mixing process:some crucial questions on granite study(1)[J]. Acta Petrologica Sinica,23(5):1141-1152. (in Chinese with English abstract)
Zhao Z B,Du J X,Liang F H,et al. ,2018. Structure and Metamorphism of Markam Gneiss Dome from the Eastern Tibetan Plateau and Its Implications for Crustal Thickening,Metamorphism,and Exhumation [J]. Geochemistry Geophysics Geosystems,20(1):24-45.
Zheng Y L,Xu Z Q,Li G W,et al. ,2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt,eastern Tibetan Plateau [J]. Lithos,362-363:105475.
Zhou M Z,Yan D P,Wang C L,et al. ,2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province,China):Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China [J]. Earth and Planetary Science Letters,248(1-2):271-285.
-
计量
- 文章访问数: 1256
- PDF下载数: 220
- 施引文献: 0