腾冲温泉中Li-U-Au异常富集特征及其成因浅析

伍皓, 李小刚, 夏彧, 周恳恳, 梁薇, 李炼鹏, 孔然, 雷星, 谢忠评. 2023. 腾冲温泉中Li-U-Au异常富集特征及其成因浅析. 沉积与特提斯地质, 43(2): 416-427. doi: 10.19826/j.cnki.1009-3850.2022.11004
引用本文: 伍皓, 李小刚, 夏彧, 周恳恳, 梁薇, 李炼鹏, 孔然, 雷星, 谢忠评. 2023. 腾冲温泉中Li-U-Au异常富集特征及其成因浅析. 沉积与特提斯地质, 43(2): 416-427. doi: 10.19826/j.cnki.1009-3850.2022.11004
WU Hao, LI Xiaogang, XIA Yu, ZHOU Kenken, LIANG Wei, LI Lianpeng, KONG Ran, LEI Xing, XIE Zhongping. 2023. Characteristics and causes of Li-U-Au abnormal enrichment in Tengchong hot spring. Sedimentary Geology and Tethyan Geology, 43(2): 416-427. doi: 10.19826/j.cnki.1009-3850.2022.11004
Citation: WU Hao, LI Xiaogang, XIA Yu, ZHOU Kenken, LIANG Wei, LI Lianpeng, KONG Ran, LEI Xing, XIE Zhongping. 2023. Characteristics and causes of Li-U-Au abnormal enrichment in Tengchong hot spring. Sedimentary Geology and Tethyan Geology, 43(2): 416-427. doi: 10.19826/j.cnki.1009-3850.2022.11004

腾冲温泉中Li-U-Au异常富集特征及其成因浅析

  • 基金项目: 中国地质调查局二级项目(DD20190122、DD20221661)、自然资源部沉积盆地与油气资源重点实验室开放基金(cdcgs2022006)联合资助
详细信息
    作者简介: 伍皓(1984—),男,硕士,高级工程师,主要从事铀矿调查研究。E-mail:wuhaocgs@sohu.com
    通讯作者: 李小刚(1983—),男,博士,教授,主要从事构造地质学与能源矿产勘查研究。E-mail:xg_lee@cqust.edu.cn
  • 中图分类号: P611;P612;P641.3

Characteristics and causes of Li-U-Au abnormal enrichment in Tengchong hot spring

More Information
  • 综合滇西腾冲1974年以来的调查研究文献资料发现,该区正在发育国内外罕见的现代热泉型铀、金、砷、锑、稀土、锂、汞、钨、氢等元素的异常富集系统。为总结温泉中锂、铀、金战略性金属元素异常富集特征,探索其共生富集机制,本文统计了腾冲57个温泉近50年报道的320个地球化学数据,初次系统梳理出温泉中锂、铀、金元素具以下典型特征:(1)3种金属元素集中在部分泉水中异常富集。锂、金主要富集于大滚锅,铀主要富集于珍珠泉和叠水河碳酸泉,温泉中锂和铀含量高于全省绝大多数温泉。(2)锂元素含量稳定、富集效率高、资源潜力大。热海地区温泉锂含量变异系数均低于30%,指示半个世纪来锂含量波动幅度小,锂“流而不衰”;有学者初步测算出全区温泉年溢出锂金属量达532.9吨,20年流失量即可超过一个小型锂矿。此外,381砂岩型铀矿床还存在铀“采而不尽”的现象,可能与泉水中新生铀的持续补给有关。在前人研究成果基础之上,新提出温泉中锂、铀、金的共生富集可能主要是在地核或其局部富集的此类元素沿“腾冲现代地幔柱”自下往上迁移,在地表温泉及其沉积物中不断聚集的结果,即“核源—地幔柱”成因。

  • 加载中
  • 图 1  腾冲县境温泉和岩浆囊分布图

    Figure 1. 

    图 2  腾冲温泉中锂含量对比图

    Figure 2. 

    图 3  腾冲温泉中锰铁钴镍与铀的关系图

    Figure 3. 

    图 4  腾冲温泉中锂铀金富集过程示意图(据赵慈平等, 2012修改)

    Figure 4. 

  • [1]

    巴俊杰, 2017. 云南腾冲县瑞滇地热田岩浆囊热源主导型热储成因模式研究(博士学位论文)[D]. 昆明: 昆明理工大学.

    Ba J J, 2017. Genetic model of magma chamber heat reservoir in Ruidian Geothermal field, Tengchong County, Yunnan province[D]. Kunming: Kunming University of Science and Technology.

    [2]

    Benson T R, Coble M A, Rytuba J J, et al. , 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature communications, 8(1): 270. doi: 10.1038/s41467-017-00234-y

    [3]

    陈军, 黄智龙, 杨瑞东, 等, 2020. 右江盆地SEDEX金矿化类型的发现及意义[J]. 科学通报, 65(15): 1486-1495 doi: 10.1360/TB-2019-0837

    Chen J, Huang Z L, Yang R D, et al. , 2020. Discovery of SEDEX gold in the Youjiang basin, SW China: Implications for a new type Au mineralization[J]. Chinese Science Bulletin, 65(15): 1486-1495. doi: 10.1360/TB-2019-0837

    [4]

    程汝南, 1982. 腾冲放射性地热水研究[J]. 放射性地质 , 3: 199 − 205

    Cheng R N, 1982. Study on radioactive geothermal water in Tengchong[J]. Radioactive geology , 3: 199 − 205.

    [5]

    戴杰敏, 2000. 热泉环境中的金矿床[J]. 国外铀金地质, 17(3): 242-251

    Dai J M, 2000. Gold deposits in hydrothermal environment[J]. Overseas Uranium and Gold Geology, 17(3): 242-251.

    [6]

    戴金星, 戴春森, 宋岩, 等, 1994. 中国一些地区温泉中天然气的地球化学特征及碳、氦同位素组成[J]. 中国科学( B辑), 24(4): 426-433

    Dai J X, Dai C S, Song Y, et al. , 1994. Geochemistry and helium and carbon isotopic compositions of natural gas from hot spring in some parts of China[J]. Science in China (Series B), 24(4): 426-433.

    [7]

    郭光裕, 侯宗林, 林卓虹, 等, 1993. 热泉型金矿床成矿模式及成矿远景评价[M]. 天津: 天津科学技术出版社.

    Guo G Y, Hou Z L, Lin Z H, et al. , 1993. Metallogenic model and metallogenic prospect evaluation of thermospring type gold deposit[M]. Tian Jin: Tianjin Science and Technology Press.

    [8]

    郭清海, 刘明亮, 李洁祥, 2017. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学, 42(2): 286-297

    Guo Q H, Liu M L, Li J X, 2017. Thioarsenic species in the high-temperature hot springs from the Rehai geothermal field (Tengchong) and their geochemical geneses[J]. Earth Science, 42(2): 286-297.

    [9]

    郭清海, 吴启帆, 2020. 云南腾冲热海高温地热水中汞的地球化学异常及其指示意义[J]. 地学前缘, 27(1): 103-111

    Guo Q H, Wu Q F, 2020. Hydrogeochemical anomaly of mercury in the high-temperature geothermal waters in the Rehai hydrothermal area in Tengchong, Yunnan and its indication[J]. Earth Science Frontiers, 27(1): 103-111.

    [10]

    Guo Q H, Liu M L, Li J X, et al. , 2017. Geochemical genesis of arsenic in the geothermal waters from the Rehai hydrothermal system, southwestern China[J]. Procedia Earth and Planetary Science, 17: 49-52. doi: 10.1016/j.proeps.2016.12.024

    [11]

    Guo Q H, Li Y M, Luo L, 2019. Tungsten from typical magmatic hydrothermal systems in China and its environmental transport[J]. Science of the Total Environment, 657(2-3): 1523-1534.

    [12]

    郭清海, 杨晨, 2021. 西藏搭格架高温热泉中钨的水文地球化学异常[J]. 地球科学, 46(7): 2544-2554

    Guo Q H, Yang C, 2021. Tungsten anomaly of the high-temperature hot springs in the Daggyai hydrothermal area[J]. Earth Science, 46(7): 2544-2554.

    [13]

    郭婷婷, 2012. 云南腾冲热海地热田特征及成因研究(博士学位论文)[M]. 昆明: 昆明理工大学.

    Guo T T, 2012. Characteristics and genesis of the Tengchong Hot Sea geothermal field in Yunnan province[D]. Kunming: Kunming University of Science and Technology.

    [14]

    郭唯明, 马圣钞, 孙艳, 等, 2019. 云南腾冲热泉中稀有金属矿化特征及其意义[J]. 地质学报, 93(6): 1321-1330

    Guo W M, Ma S C, Sun Y, et al. , 2019. Characteristics and significance of rare metal mineralization in hot-spring of Tengchong area, Yunnan[J]. Acta Geologica Sinica, 93(6): 1321-1330.

    [15]

    侯宗林, 郭光裕, 1991. 云南腾冲−梁河地热系统与现代热泉型金矿化作用[J]. 地质论评, 37(3): 243 − 249

    Hong Z L, Guo G Y. 1991. The Tengchong−Lianghe geothermal system and hot spring−type gold mineralization in Yunan province[J]. Geological Review, 37(3): 243 − 249.

    [16]

    侯宗林, 1992. 我国热泉型金矿成矿地质背景与找矿前景[J]. 地质与勘探, 28(3): 1 − 6, 38

    Hong Z L, 1992. Geological setting and exploration prospect of hot spring type gold deposits in China[J]. Geology and Prospecting, 28(3): 1 − 6, 38.

    [17]

    胡涛, 张振儒, 1991. 低温热泉型金矿床特征及找矿标志[J]. 黄金科技动态, 10: 12 − 15, 21

    Hu T, Zhang Z R, 1991. Characteristics and prospecting criteria of cryogenic hydrothermal gold deposit[J]. Gold Science and Technology trends, 10: 12 − 15, 21.

    [18]

    胡云中, 邓坚, 郭唯明, 2002. 腾冲现代活动水热流体的地质成矿作用[J]. 矿床地质, 21(增刊): 967-969

    Hu Y Z, Deng J, Guo W M, 2002. Geological Metallogenesis of Active Hydrothermal Fluid in Tengchong, Yunnan Province, China[J]. Mineral Deposits, 21(suppl): 967-969.

    [19]

    Hua Y J, Zhang S X, Li M K, et. al, 2019. Magma system beneath Tengchong volcanic zone inferred from local earthquake seismic tomography[J], Journal of Volcanology and Geothermal Research, 377: 1 − 16.

    [20]

    黎彤, 1976. 化学元素的地球丰度[J]. 地球化学 (3): 167 − 174

    Li T, 1976. Chemical element abundances in the earth and its major shells[J]. Geochimica (3): 167 − 174.

    [21]

    李欣, 2012. 云南腾冲全新世火山活动特点及其成因探讨(博士学位论文)[D]. 北京: 中国科学院.

    Li X, 2012. A study on characteristics of Holocene volcanic activities and origin of Holocene volcanoes in Tengchong volcanic eruption field Yunnan province[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.

    [22]

    Li J X, Sagoe G, Yang G, et al. , 2019. The application of geochemistry to bicarbonate thermal springs with high reservoir temperature: A case study of the Batang geothermal field, western Sichuan Province, China[J]. Journal of Volcanology and Geothermal Research, 371: 20-31. doi: 10.1016/j.jvolgeores.2018.12.005

    [23]

    廖志杰, 1999. 腾冲火山和地热[J]. 地质论评, 45(增刊): 934-939

    Liao Z J, 1999. Volcanism and geothermal in Tengchong city, Yunnan province, China[J]. Geological Review, 45(suppl): 934-939.

    [24]

    林木森, 2015. 滇西腾冲地区新生代构造−岩浆−火山地热活动成因及大地构造意义(博士学位论文)[D]. 武汉: 中国地质大学(武汉).

    Lin M S, 2015. Genetic relationship among the Cenozoic tectonic evolution, volcanic magmatism and high geothermal anomaly activities in Tengchong, western Yunnan province and its tectonic implications[D]. Wuhan: China University of Geosciences(Wuhan).

    [25]

    刘宝耽, 陆元法, 薛堂荣, 等. 1998. 热泉热液系统金的成矿地球化学研究[J]. 地球学报, 19(3): 251 − 260

    Liu B J, Lu Y F, Yue T R, et al. , 1998. Study on the gold metallogenetic geochemistry in hot spring−hydrothermal systems[J]. Acta Geoscientia Sinica, 19(3): 251 − 260.

    [26]

    Liu H S, Zhou X, Zhang Y Q, et al. , 2020. Hydrochemical characteristics of travertine-depositing hot springs in western of Yunnan, China[J]. Quaternary International, 547: 63-74. doi: 10.1016/j.quaint.2019.10.003

    [27]

    卢志艳, 2012. 腾冲与黄石公园(美国)典型高温水热系统的地热流体地球化学对比(硕士学位论文)[D]. 武汉: 中国地质大学(武汉).

    Lu Z Y, 2012. The Geochemical Comparison of Geothermal Fluid between Two Typical High−temperature Hydrothermal System in Tengchong(China)and Yellowstone National Park (USA)[D]. Wuhan: China University of Geosciences (Wuhan).

    [28]

    罗黎, 2021. 腾冲典型地热水环境中钨的来源、迁移、形态转化及其去除(博士学位论文)[D]. 武汉: 中国地质大学(武汉).

    Luo L, 2021. Sources, migration, morphological transformation and removal of Tungsten from typical geothermal water environment in Tengchong [D]. Wuhan: China University of Geosciences(Wuhan).

    [29]

    莫宣学, 潘桂堂, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 13(6): 43-51

    Mo X X, Pan G T, 2006. From the Tethys to the formation of the Qinghai-Tibet plateau: constrained by tectono-magmatic events[J]. Earth Science frontiers, 13(6): 43-51.

    [30]

    Nelson C E, Giles D L, 1985. Hydrothermal eruption mechanisms and hot spring gold deposits[J]. Economic Geology, 80: 1633-1639. doi: 10.2113/gsecongeo.80.6.1633

    [31]

    Nelson P L, Grand S P, 2018. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves[J]. Nature geoscience, 11(4): 280-284. doi: 10.1038/s41561-018-0075-y

    [32]

    聂爱国, 2007. 黔西南卡林型金矿的成矿机制及成矿预测(博士学位论文)[D]. 昆明: 昆明理工大学.

    Nie A G, 2007. A mineralization mechanism as well as minerogenetic prospect of Carlin−type gold deposit in southwestern of Guizhou[D]. Kunming: Kunming University of Science and Technology.

    [33]

    Oppliger G L, Murphy J B, Brimhall G H, 1997. Is the ancestral Yellowstone hotspot responsible for the Tertiary “Carlin” mineralization in the great basin of Nevada? [J]. Geology, 25(7): 627-630. doi: 10.1130/0091-7613(1997)025<0627:ITAYHR>2.3.CO;2

    [34]

    潘传楚, 1988. 新的金矿类型—热泉型金矿床. 黄金, 9(3): 31 − 32, 19

    Pan C C, 1988. A new type of gold deposit − hydrothermal gold deposit[J]. Gold, 9(3): 31 − 32, 19.

    [35]

    戚学祥, 韦诚, 蔡志慧, 等, 2019. 滇西腾冲地块高黎贡群变质沉积岩时代与原特提斯洋俯冲/增生: 来自碎屑锆石U-Pb定年和岩石地球化学证据[J]. 地质学报, 93(1): 94-116

    Qi X X, Wei C, Cai Z H, et al. , 2019. Sedimentary age of metamorphic rocks of Gaoligong group in Tengchong block, western Yunnan and its relationship with subduction/accretion of prototethys: evidences from detrital zircon U-Pb dating and geochemistry[J]. Acta Geologica Sinica, 93(1): 94-116.

    [36]

    芮宗瑶, 沈建忠, 1992. 热泉型矿床研究进展[J]. 矿物岩石地球化学通讯, (3): 147-152

    Rui Z Y, Shen J Z, 1992. Research progress of hydrothermal deposits[J]. Mineralogy, petrology and geochemistry communications, (3): 147-152.

    [37]

    上官志冠, 孙明良, 李恒忠, 1999. 云南腾冲地区现代地热流体活动类型[J]. 地震地质, 21(4): 436-442

    Shangguan Z G, Sun M L, Li H Z, 1999. Active types of modern geothermal fluids at the Tengchong region, Yunnan province[J]. Seismology and Geology, 21(4): 436-442.

    [38]

    上官志冠, 白春华, 孙明良, 2000. 腾冲热海地区现代幔源岩浆气体释放特征[J]. 中国科学(D辑), 30(4): 407-414

    Shangguan Z G, Bai C H, Sun M L, 2000. Characteristics of modern mantle-derived magma gas release in Rehai area of Tengchong[J]. Science in China series D, 30(4): 407-414.

    [39]

    上冠志冠, 霍卫国, 2001. 腾冲热海地热区逸出H2的δD值及其成因[J]. 科学通报, 46(15): 1316-1320 doi: 10.1360/csb2001-46-15-1316

    Shangguan Z G, Huo W G, 2001. δD value of H2 escaping from Tengchong Geothermal area and its origin[J]. Chinese Science Bulletin, 46(15): 1316-1320 doi: 10.1360/csb2001-46-15-1316

    [40]

    沈立成, 2007. 中国西南地区深部脱气(地质)作用与碳循环研究(博士学位论文)[D]. 重庆: 西南大学.

    Shen L C, 2007. The study of deep source CO2 degasification and carbon cycle in the southwest of China[D]. Chongqing: Southwest University.

    [41]

    宋涛, 刁谦, 真允庆, 2018. 青藏高原地热资源与地幔柱构造的关系—地幔热柱多级演化导致岩浆上侵成为浅部热源[J]. 河北地质大学学报, 41(6): 1-24

    Song T, Diao Q, Zhen Y Q, 2018. Relationship between geothermal resources and mantle plume structure in the Qinghai-Xizang plateau-Multi-stage evolution of mantle heat plumes resulting in magma intrusion into shallow heat source[J]. Journal of Hebei GEO University, 41(6): 1-24.

    [42]

    宋谢炎, 2019. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 38(4): 699-710

    Song X Y, 2019. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 38(4): 699-710.

    [43]

    孙洁, 徐常芳, 江钊, 等, 1989. 滇西地区地壳上地幔电性结构与地壳构造活动的关系[J]. 地震地质, 11(1): 35-45

    Sun J, Xu C F, Jiang Z, et al. , 1989. The electrical structure of the crust and upper mantle in the west part of Yunnan province and its relation to crustal tectonics[J]. Seismology and Geology, 11(1): 35-45.

    [44]

    腾冲地热资源联合调查组, 1974. 云南省腾冲地热资源考察报告[M]. 北京: 腾冲地热资源联合调查组.

    Tengchong Geothermal Resources Joint Investigation Group, 1974. Investigation report of geothermal resources in Tengchong, Yunnan Province[M]. Beijing: Tengchong Geothermal Resources Joint Investigation Group.

    [45]

    佟伟, 章铭陶, 1989. 腾冲地热[M]. 北京: 科学出版社.

    Tong W, Zhang M T, 1989. Tengchong Geothermal[M]. Beijing: Science Press.

    [46]

    Qi J H, Xu M, An C J, et al. , 2017. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China[J]. Physics of the Earth and Planetary Interiors, 263: 12-22. doi: 10.1016/j.pepi.2017.01.001

    [47]

    王晨光, 郑绵平, 张雪飞, 等, 2020. 青藏高原南部地热型锂资源[J]. 科技导报, 38(15): 24-36

    Wang C G, Zhen M P, Zhang X F, et al. , 2020. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 38(15): 24-36.

    [48]

    王大钊, 冷成彪, 秦朝建, 等, 2022. 铀的地球化学性质与成矿作用[J]. 大地构造与成矿学, 46(2): 282-302

    Wang D Z, Leng C B, Qin C J, et al. , 2022. Geochemical characteristics and mineralization of uranium[J]. Geotectonica et Metallogenia, 46(2): 282-302.

    [49]

    王登红, 林文蔚, 杨建民, 等, 1999. 试论地幔柱对于我国两大金矿集中区的控制意义[J]. 地球学报, 20(2): 157-162

    Wang D H, Lin W W, Yang J M, et al. , 1999. Controlling effects of the mantle plume on the Jiaodong and Dian- Qian-Gui gold concentration areas[J]. Acta Geoscientia Sinica, 20(2): 157-162.

    [50]

    王登红, 付小方, 应汉龙, 2003. 四川西部现代热泉型金矿化的发现和初步研究[J]. 地质论评, 49(3): 311 − 315.

    Wang D H, Fu X F, Ying H L. 2003. The discovery and study of gold mineralization related to modern hot spring in western Sichuan province[J], Geological Review, 49(3): 311 − 315.

    [51]

    王登红, 付小方, 应汉龙, 2007. 四川西部现代热泉沉积物地球化学特征及意义[J]. 吉林大学学报(地球科学版), 37(5): 878-883

    Wang D H, Fu X F, Ying H L, 2007. Geochemistry and Significance of Modern Hot-Spring Sinters in Western Sichuan[J]. Journal of Jilin University (Earth Science Edition), 37(5): 878-883.

    [52]

    王登红, 1998. 地幔柱及其成矿作用[M]. 北京: 地震出版社.

    Wang D H, 1998. Mantle plume and mineralization[M]. Beijing: Seismological press.

    [53]

    王蒙蒙, 2017. 云南西北地区部分温泉和盐泉特征及钙华成因(硕士学位论文)[D]. 北京: 中国地质大学(北京).

    Wang M M, 2017. Characteristics of some hot springs and salt springs and formation of travertines in northwestern Yunnan[D]. Beijing: China University of Geosciences(Beijing).

    [54]

    王蒙蒙, 2020. 云南腾冲市热海地区地下热水的水化学和同位素特征研究(博士学位论文)[D]. 北京: 中国地质大学(北京).

    Wang M M, 2020. Hydrochemical and isotopic characteristics of geothermal water in the Rehai region in Tengchong of Yunnan[D]. Beijing: China University of Geosciences(Beijing).

    [55]

    Wang M M, Zhou X, Liu Y et al. , 2020. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China [J]. Applied Geochemistry, 119: 1-12.

    [56]

    王云, 2021. 滇东南地热流体地球化学特征研究(博士学位论文)[D]. 北京: 中国地震局地球物理研究所.

    Wang Y, 2021. A Research on Geochemical Characteristics of Geothermal Fluids in Southeast Yunnan Province, China[D]. Beijing: Institute of Geophysics, China Earthquake Administration.

    [57]

    White D E, 1955. Violent mud volcano eruption of Lake City Hot Spring, Northeastern California[J]. Geological Society of America Bulletin, 66: 1109-1130. doi: 10.1130/0016-7606(1955)66[1109:VMEOLC]2.0.CO;2

    [58]

    伍皓, 江新胜, 余谦, 等, 2016. “煤铀兼探”找矿新思路在云南的初次应用—以滇西户撒盆地铀矿勘探为例[J]. 沉积与特提斯地质, 36(4): 106 − 110

    Wu H, Jiang X S, Yu Q, et al. , 2016. Coal−uranium exploration in the Husa Basin, western Yunnan: A new approach[J]. Sedimentary Geology and Tethyan Geology, 36(4): 106 − 110.

    [59]

    伍皓, 李小刚, 吴晨, 等, 2021. 地球深部真的贫铀钍吗? —来自秦岭造山带加里东期岩浆岩体锆石铀钍含量的讨论[J]. 地质论评, 67(5): 1207 − 1230

    Wu H, Li X G, Wu C, et al. , 2021a. Uranium and thorium elements are loss in the deep inside the Earth? Discussion from the uranium and thorium contents of zircon minerals from the Caledonian igneous plutons in the Qinling Orogen[J]. Geological Review, 67(5): 1207 − 1230.

    [60]

    伍皓, 熊树银, 夏彧, 等, 2023. 铀成矿机理的统一性探讨[J]. 沉积与特提斯地质, 43(1): 59-76

    Wu H, Xiong S Y, Xia Y, et al. , 2021b. Discuss on the unity of uranium metallogenic mechanism[J]. Sedimentary Geology and Tethyan Geology, 43(1): 59-76.

    [61]

    肖昌浩, 王庆飞, 周兴志, 等, 2010. 腾冲地热区高温热泉水中稀土元素特征[J]. 岩石学报, 26(6): 1938-1944

    Xiao C H, Wang Q F, Zhou X Z, et al. , 2010. Rare-earth elements in hot spring waters in the Tengchong geothermal area[J]. Acta Petrologica Sinica, 26(6): 1938-1944.

    [62]

    Xiao C H, Wang Q F, Li G J, et al. , 2017. Subduction-related hot spring-type gold mineralization in the central Tengchong block, southwestern China[J]. Ore Geology Reviews, 90: 987-997. doi: 10.1016/j.oregeorev.2016.12.011

    [63]

    胥颐, 钟大赉, 刘建华, 2012. 滇西地区壳幔解耦与腾冲火山区岩浆活动的深部构造研究[J]. 地球物理学进展, 27(3): 846-855

    Xu Y, Zhong D L, Liu J H, 2012. Constraints of deep structures on the crust-mantle decoupling in the western Yunnan and the magma activity in the Tengchong volcanic area[J]. Progress in Geophys, 27(3): 846-855.

    [64]

    徐洪飞, 2020. 云南泸水地区部分温泉水化学和同位素特征及成因分析(硕士学位论文)[D]. 北京: 中国地质大学(北京).

    Xu H F, 2020. An analysis of hydrochemical and isotopic characteristics and geneses of some of the hot springs in the Lushui area of Yunnan[D]. Beijing: China University of Geosciences(Beijing).

    [65]

    Xu S, Nakai S, Wakita H, et al. , 1994. Helium isotopic compositions in Quaternary volcanic geothermal area near Indo−Eurasian collisional margin at Tengchong, China[J]. In: Matsuda J. Noble Gas Geochemistry and Cosmochemistry. Tokyo: Terra Scientific Publishing Company (TERRAPUB), 305 − 313.

    [66]

    薛颖瑜, 刘海洋, 孙卫东, 2021. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 45(6): 1202-1215

    Xue Y Y, Liu H Y, Sun W D, 2021. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 45(6): 1202-1215.

    [67]

    严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程[J]. 地球科学, 47(2): 622-632

    Yan K T, Guo Q H, Luo L, 2022. Methylation and thiolation of arsenic in Tengchong hot Springs[J]. Earth Science, 47(2): 622-632.

    [68]

    Yin A, Harrison T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    [69]

    余鸣潇. 2019. 云南省临沧地区部分温泉水化学同位素特征及成因研究(硕士学位论文)[D]. 北京: 中国地质大学(北京).

    Yu M X, 2019. A study of hydro chemical and isotopic characteristics and formation of some of the hot springs in the Lincang area of Yunnan[D]. Beijing: China University of Geosciences(Beijing).

    [70]

    于沨, 于扬, 王登红, 等. 2022. 锂同位素地球化学在地热流体水岩反应中的应用—以川西现代富锂热泉研究为例[J]. 岩石学报, 38(2): 472 − 482

    Yu F, Yu Y, Wang D H, et al. , 2022. Application of Li isotope in geothermal fluid−rock interaction: A case study of modern Li−rich geothermal water in western Sichuan[J]. Acta petrologica sinica, 38(2): 472 − 482.

    [71]

    张金带, 2016. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 32(6): 321-322

    Zhang J D, 2016. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 32(6): 321-322.

    [72]

    Zhang C, Liu H X, 2019. A growing sandstone type uranium district in South Yili Basin, NW China as a result of extension of Tien Shan Orogen: Evidences from geochronology and hydrology[J]. Gondwana Research, 76: 146-172. doi: 10.1016/j.gr.2019.06.006

    [73]

    Zhang G P, Liu C Q, Liu H, et al. , 2008. Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China[J]. Geothermics, 37(1): 73-83. doi: 10.1016/j.geothermics.2007.09.002

    [74]

    赵慈平, 2008. 腾冲火山区现代幔源氦释放特征及深部岩浆活动研究(博士学位论文)[D]. 北京: 中国地震局地质研究所.

    Zhao C P, 2008. Mantle−derived helium release characteristics and deep magma charmber activities of present day in the Tengchong volcanicic area[D]. Beijing: Institute of geology, China Earthquake Administration.

    [75]

    赵慈平, 冉华, 王云, 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义[J]. 岩石学报, 28(4): 1189-1204

    Zhao C P, Ran H, Wang Y, 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implication for tectonics and magmatism[J]. Acta Petrologica Sinica, 28(4): 1189-1204.

    [76]

    赵平, 谢鄂军, 多吉, 等, 2002. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 18(4): 539-550

    Zhao P, Xie E J, Duo J, et al. , 2002. Geochemical characteristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 18(4): 539-550.

    [77]

    赵勇伟, 樊祺诚, 2010. 腾冲马鞍山、打鹰山、黑空山火山岩浆来源与演化[J]. 岩石学报, 26(4): 1133-1140

    Zhao Y W, Fan Q C, 2010. Magma origin and evolution of Maanshan volcano, Dayingshan volcano and Heikongshan volcano in Tengchong area[J]. Acta Petrologica Sinica, 26(4): 1133-1140.

    [78]

    赵元艺, 聂凤军, 侯增谦, 等, 2007. 西藏搭格架热泉型铯矿床地球化学[J]. 矿床地质, 25(2): 163 − 174

    Zhao Y Y, Nie F J, Hou Z Q, et al. , 2007. Geochemistry of Targejia hot spring type cesium deposit in Tibet[J], Mineral Deposit, 25(2): 163 − 174.

    [79]

    赵元艺, 赵希涛, 马志邦, 等, 2010. 西藏谷露热泉型铯矿床年代学及意义[J]. 地质学报, 84(2): 211-220

    Zhao Y Y, Zhao X T, Ma Z B, et al. , 2010. Chronology of the Gulu hotspring cesium deposit in Nagqu, Tibet and its gological significance[J]. Acta Geologica Sinica, 84(2): 211-220.

    [80]

    周恳恳, 夏彧, 伍皓, 等, 2021. 滇西梁河盆地南林组沉积学特征及其对砂岩型铀矿的控制[J]. 沉积与特提斯地质, 41(4): 554-562

    Zhou K K, Xia Y, Wu H, et al. , 2021. Sedimentary facies and their controls over mineralization of sandstone type uranium deposits in Nanlin formation in Lianghe basin, Western Yunnan, China[J]. Sedimentary Geology and Tethyan Geology, 41(4): 554-562.

    [81]

    Zhu M X, Tong W, 1987. Surface hydrothermal minerals and their distribution in the Tengchong geothermal area, China[J]. Geothermics, 16(2): 181-195. doi: 10.1016/0375-6505(87)90065-4

    [82]

    庄亚芹, 郭清海, 刘明亮, 等, 2016. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学, 41(9): 1499-1510

    Zhuang Y Q, Guo Q H, Liu M L, et al. , 2016. Geochemical simulation of thioarsenic speciationin high-temperature, sulfide-rich hot springs: a case study in the Rehai hydrothermal area, Tengchong, Yunnan[J]. Earth Science, 41(9): 1499-1510.

  • 加载中

(4)

计量
  • 文章访问数:  832
  • PDF下载数:  128
  • 施引文献:  0
出版历程
收稿日期:  2022-07-27
修回日期:  2022-09-29
录用日期:  2022-09-29
刊出日期:  2023-06-30

目录