西藏地热系统B、Li、Rb和Cs元素空间分布规律与超常富集机制

谭红兵, 石智伟, 丛培鑫, 薛飞, 陈国辉. 2023. 西藏地热系统B、Li、Rb和Cs元素空间分布规律与超常富集机制. 沉积与特提斯地质, 43(2): 404-415. doi: 10.19826/j.cnki.1009-3850.2023.02001
引用本文: 谭红兵, 石智伟, 丛培鑫, 薛飞, 陈国辉. 2023. 西藏地热系统B、Li、Rb和Cs元素空间分布规律与超常富集机制. 沉积与特提斯地质, 43(2): 404-415. doi: 10.19826/j.cnki.1009-3850.2023.02001
TAN Hongbing, SHI Zhiwei, CONG Peixin, XUE Fei, CHEN Guohui. 2023. The spatial distribution law of B, Li, Rb and Cs elements and supernormal enrichment mechanism in Tibet geothermal system. Sedimentary Geology and Tethyan Geology, 43(2): 404-415. doi: 10.19826/j.cnki.1009-3850.2023.02001
Citation: TAN Hongbing, SHI Zhiwei, CONG Peixin, XUE Fei, CHEN Guohui. 2023. The spatial distribution law of B, Li, Rb and Cs elements and supernormal enrichment mechanism in Tibet geothermal system. Sedimentary Geology and Tethyan Geology, 43(2): 404-415. doi: 10.19826/j.cnki.1009-3850.2023.02001

西藏地热系统B、Li、Rb和Cs元素空间分布规律与超常富集机制

  • 基金项目: 第二次青藏高原综合科学考察(2022QZKK0202)与国家自然科学基金(41872074,U22A20573)
详细信息
    作者简介: 谭红兵(1972—),男,博士,教授,从事地热和盐湖矿产资源研究。E-mail:tan815@sina.com
  • 中图分类号: P592

The spatial distribution law of B, Li, Rb and Cs elements and supernormal enrichment mechanism in Tibet geothermal system

  • 西藏地热资源异常丰富,属于地中海—喜马拉雅地热带的重要组成部分。地热系统最为典型的地球化学特征是大部分地热泉或与之相应的泉华沉积物超常富集B、Li、Rb、Cs等元素,具有重要的矿产资源意义。有关这些特征元素来源与水化学演化成因机制,长期存在争议,在理论上缺乏系统论述。本文基于多年野外考察与数据积累,以及对前人研究成果的系统总结,提出了西藏地热系统特征元素组合与富集成因模式,宏观板块构造与微观地球化学分布规律结合,揭示了其成因机制。数据综合分析表明,B、Li、Rb、Cs元素在空间上的分布富集规律总体具有同步性,主要集中分布于雅鲁藏布江缝合带与南北向断裂带交汇区的高温地热系统。B同位素、元素组合、水循环特征及大量地球物理证据表明物源受控于岩浆残余流体,水-岩作用难以作为唯一物源支撑地热系统如此大规模的特征元素超常富集。结论提出西藏地热系统超常富集的元素受控于板块俯冲碰撞、地壳局部重熔、重熔型岩浆流体分异演化、地下水深循环等一系列内外生地质耦合作用过程。本文对西藏地热系统元素超常富集成因机制的解释,有利于增强人们对高温地热系统除水资源与热能意义之外,也同时关注矿产资源价值,实现“水-热-矿”于一体的系统理解,也对未来正确评价地热水体或沉积物矿产资源价值有理论指导意义。

  • 加载中
  • 图 1  西藏主要地热带分布(a)、对应的地壳南北向断裂带地球物理异常(b)与藏南中部壳幔地质构造模型(c)(据文献Wang et al., 2017; Li et al., 2018侯增谦等,2006重新绘制)

    Figure 1. 

    图 2  西藏地热泉B(a)、Li(b)、Rb(c)和Cs(d)元素空间分布等值线图(数据来源于本课题组及佟伟等,2000;岩浆岩带的划分依据张朝锋等,2018

    Figure 2. 

    图 3  西藏地热系统B、Li、Rb、Cs元素超常富集演化模型

    Figure 3. 

    表 1  超常富集区主要地热泉特征元素组成

    Table 1.  Geothermal data of unusual enrichment of typical elements

    地热泉名称B/mg·L−1Li/mg·L−1Rb/mg·L−1Cs/mg·L−1
    莫落江472.6850.001.8530.60
    多果曲290.9620.301.2523.00
    色米626.6044.792.8960.98
    拉布朗484.5223.752.1058.00
    查托岗145.9020.971.6613.09
    卡乌147.6023.311.7514.95
    拉旺孜171.9024.470.8014.51
    查巴曲珍144.2527.802.2514.10
    谷露50.5525.202.755.70
    古堆-布雄朗古115.8927.901.708.60
    古堆-巴布的密101.5919.301.356.00
    古堆:巴布日苏112.9318.752.4011.30
    古堆-杀嘎朗嘎106.0321.101.505.60
    古堆-茶卡81.3712.401.305.80
    竹墨沙506.7557.907.7259.82
    下载: 导出CSV
  • [1]

    Aggarwal J K, Palmer M R, Bullen T D, et al. , 2000. The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems[J]. Geochimica Et Cosmochimica Acta, 64(4): 579-585. doi: 10.1016/S0016-7037(99)00300-2

    [2]

    Bartier E, 2002. Geothermal energy technology and current status: an overview[J]. Renewable and Sustainable Energy Reviews, 6(1): 3-65.

    [3]

    Birkle P, Merkel B, Portugal E, et al. , 2001. The origin of reservoir fluids in the geothermal field of Los Azufres, Mexico - isotopical and hydrological indications[J]. Applied Geochemistry, 16(14): 1595-1610. doi: 10.1016/S0883-2927(01)00031-2

    [4]

    Brown L. D. , Zhao W. J. , Nelson K. D, et al. , 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profling. [J]. Science, 274: 1688-1690. doi: 10.1126/science.274.5293.1688

    [5]

    Brugger J, Long N, Mcphail D C, et al. , 2005. An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia[J]. Chemical Geology, 222 (1-2): 35-64. doi: 10.1016/j.chemgeo.2005.06.007

    [6]

    Cao H W, Pei Q M, Santosh M, et al. , 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 234, 104229.

    [7]

    Chowdhury A N, Handa B K, Das A K, 1974. High lithium, rubidium and cesium contents of thermal spring water, spring sediments and borax deposits in Puga valley, Kashmir, India[J]. Geochemical journal, 8(2): 61-65. doi: 10.2343/geochemj.8.61

    [8]

    Duo J, 2005. High-temperature geothermal systems: Characteristics of Yangbajing geothermal fields, China[J]. Geotherm. Energy, 2: 10-14.

    [9]

    Elenga H I, Tan H, Su J, et al, 2021. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes[J]. Geochemistry, 81(3): 125797. doi: 10.1016/j.chemer.2021.125797

    [10]

    Feng Z J, Zhao Y S, Zhou A C, et al. , 2012. Development program of hot dry rock geothermal resource in the Yangbajing Basin of China[J]. Renewable Energy, 39(1): 490-495. doi: 10.1016/j.renene.2011.09.005

    [11]

    Fernando T, Michael W, Francisco V, 2012. The boron isotope geochemistry of tourmaline−rich alteration in the IOCG systems of northern Chile: implications for a magmatic−hydrothermal origin [J]. Miner Deposita, 47: 483−499.

    [12]

    Grimaud D, Huang S, Michard G, et al. , 1985. Chemical study of geothermal waters of Central Tibet (China)[J]. Geothermics, 14(1): 35-48. doi: 10.1016/0375-6505(85)90092-6

    [13]

    Guillot S, Sigoyer J D, Lardeaux J M, et al. , 1997. Eclogitic metasediments from the Tso Morari area (Ladakh, Himalaya): evidence for continental subduction during India-Asia convergence[J]. Contributions to Mineralogy & Petrology, 128(2-3): 197-212.

    [14]

    Guo Q H, 2012. Hydrogeochemistry of high-temperature geothermal systems in China: A review[J]. Applied Geochemistry, 27(10): 1887-1898. doi: 10.1016/j.apgeochem.2012.07.006

    [15]

    Gupta H K, Roy S, 2007. Geothermal energy: an alternative resource for the 21st century[M]. Elsevier, Amsterdam.

    [16]

    Hoke L, Lamb S, Hilton D R, et al. , 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithospheric structure[J]. Earth and Planetary Science Letters, 180(3-4): 297-308. doi: 10.1016/S0012-821X(00)00174-6

    [17]

    侯增谦, 李振清, 曲晓明, 等, 2001.0. 5Ma以来的青藏高原隆升过程—来自冈底斯带热水活动的证据[J]. 中国科学(D辑), 31(B12): 27-33

    Hou Z Q, Li Z Q, Qu X M, et al. , 2001. Uplift process of the Qinghai-Tibet Plateau since 0.5 Ma: Evidence from hot water activity in the Gangdise belt[J]. Science In China(Series D), 31(B12): 27-33.

    [18]

    侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束[J]. 地质学报, (04): 482-493 doi: 10.3321/j.issn:0001-5717.2004.04.007

    Hou Z Q and Li Z Q, 2004. Possible location for underthrusting front of the Indus Continent: Constraints from Helium Isotope of the Geothermal Gas in southern Tibet and eastern Tibet[J]. Acta Geologica Sinica, (04): 482-493. doi: 10.3321/j.issn:0001-5717.2004.04.007

    [19]

    侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 22(4), 761 − 774.

    Hou Z Q, Zhao Z D, Gao Y F, et al. , 2006. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J]. Acta Petrologica Sinica, 22(4): 761 − 774.

    [20]

    Hua Y J, Zhang S X, Li M K, et. al, 2019. Magma system beneath Tengchong volcanic zone inferred from local earthquake seismic tomography[J], Journal of Volcanology and Geothermal Research, 377(JUN. 1): 1 − 16.

    [21]

    Jiang S Y, Radvanec M, Nakamura E, et al. , 2008. Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: Constraints on magmatic and metamorphic fluid evolution[J]. Lithos, 106(1-2): 1-11. doi: 10.1016/j.lithos.2008.04.004

    [22]

    Kasemann S A, Meixner A, Erzinger J, et al. , 2003. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)[J]. Journal of South American Earth Sciences, 16(8): 685-697.

    [23]

    Klemperer, S L, Zhao, P, Whyte C J, et al. , 2022. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proceedings of the National Academy of Sciences, 119(12): e2113877119. doi: 10.1073/pnas.2113877119

    [24]

    Kind R, Ni J, Zhao W J, et al. , 1996. Evidence from earthquake data for a partial melten crustal layer in Southern Tibet[J]. Science, 274: 1692-1694. doi: 10.1126/science.274.5293.1692

    [25]

    Klemperer S L, Kennedy B M, Sastry S R, et al. , 2013. Mantle fluids in the Karakoram fault: Helium isotope evidence[J]. Earth and Planetary Science Letters, 366: 59-70. doi: 10.1016/j.jpgl.2013.01.013

    [26]

    Li J T, Song X D, 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 115(33): 8296-8300. doi: 10.1073/pnas.1717258115

    [27]

    Li S H, Unsworth M J, Booker J R, et al. , 2003. Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data[J]. Geophysical Journal International, 153(2): 289-304. doi: 10.1046/j.1365-246X.2003.01850.x

    [28]

    Li Z Q, Hou Z Q, Nie F J, et al. , 2006. Enrichment of Element Cesium during Modern Geothermal Action in Tibet, China[J]. Acta Geologica Sinica, 80(9): 1457-1464.

    [29]

    李振清, 侯增谦, 聂凤军, 等, 2006. 西藏地热活动中铯的富集过程探讨[J]. 地质学报, 80(6): 1457-1464

    Li Z Q, Hou Z Q, Nie F J, et al. , 2006. Enrichment of element Cesium during modern geothermal action in Tibet, China[J]. Acta Geologica Sinica, 80(6): 1457-1464.

    [30]

    Liao Z J, 2018. Thermal Springs and Geothermal Energy in the Qinghai-Tibetan Plateau and the Surroundings[J]. Springer Hydrogeology, 23-38.

    [31]

    Liu, Z, Tian, X, Yuan, X, et al. , 2020. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves[J]. Earth and Planetary Science Letters, 531, 115954.

    [32]

    Makovsky Y, Klemperer S L, Ratschbacher L, et al. , 1999. Midcrustal reflector on INDEPTH wide-angle profiles: An ophiolitic slab beneath the India-Asia suture in southern Tibet?[J]. Tectonics, 18(5): 793-808. doi: 10.1029/1999TC900022

    [33]

    Minissale A, Borrini D, Montegrossi G, et al. , 2008. The Tianjin geothermal field (north-eastern China): Water chemistry and possible reservoir permeability reduction phenomena[J]. Geothermics, 37(4): 400-428. doi: 10.1016/j.geothermics.2008.03.001

    [34]

    牟保磊, 1999. 元素地球化学[M]. 北京: 北京大学出版社, 1 − 227

    Mu B L, 1999. Element Geochemistry[M]. Beijing: Peking University Press, 1 − 227.

    [35]

    Nelson K D, Zhao W, Brown L D, et al. , 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results[J]. science, 274(5293): 1684-1688. doi: 10.1126/science.274.5293.1684

    [36]

    Nicholson K, 1993. Geothermal fluids: Chemistry and exploration techniques[M]. Springer−Verlag.

    [37]

    Qin D J, Turner J V, Pang Z H, 2005. Hydrogeochemistry and groundwater circulation in the Xi’an geothermal field, China[J]. Geothermics, 34(4): 471-494. doi: 10.1016/j.geothermics.2005.06.004

    [38]

    秦克章, 周起凤, 赵俊兴, 等, 2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂[J]. 地质学报, 95(10): 3146~3162 doi: 10.3969/j.issn.0001-5717.2021.10.014

    Qin K Z, Zhou Q F, Zhao J X, et al. , 2021. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes[J]. Acta Geologica Sinica, 95(10): 3146~3162. doi: 10.3969/j.issn.0001-5717.2021.10.014

    [39]

    Shi, D, Klemperer, S. L, Shi, J, et al. , 2020. Localized foundering of Indian lower crust in the India–Tibet collision zone[J]. Proceedings of the National Academy of Sciences, 117, 24742-24747.

    [40]

    Su J B, Tan H B, 2022. The genesis of Rare-alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northern Yadong-Gulu rift[J]. Ore Geology Reviews, 147: 104987. doi: 10.1016/j.oregeorev.2022.104987

    [41]

    Tan H B, Chen J, Rao W B, et al. , 2012. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China[J]. Journal of Asian Earth Sciences, 51: 21-29. doi: 10.1016/j.jseaes.2012.03.002

    [42]

    Tan H B, Zhang Y F, Zhang W J, et al. , 2014. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 51: 23-32. doi: 10.1016/j.apgeochem.2014.09.006

    [43]

    佟伟, 1981. 西藏地热[M]. 北京: 科学出版社, 1 − 118

    Tong W, 1981. Tibet Geothermal[M]. Beijing: Science Press, 1 − 118.

    [44]

    佟伟, 廖志杰, 刘时彬, 等, 2000. 西藏温泉志[M]. 北京: 科学出版社.

    Tong W, Liao Z J, Liu S B, et al., 2000. Thermal Springs in Tibet[M]. Beijing: Science Press.

    [45]

    王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(07): 1923-1937 doi: 10.3969/j.issn.0001-5717.2020.07.002

    Wang G L and Lin W J, 2020. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(07): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    [46]

    Wang S Q, Lu C, Nan D W, et al. , 2017. Geothermal resources in Tibet of China: current status and prospective development[J]. Environmental Earth Sciences, 76(6): 239. doi: 10.1007/s12665-017-6464-5

    [47]

    Wei K, Lin R, Wang Z, 1982. Isotopic composition and tritium content of waters from Yangbajing geothermal area, Xizang (Tibet), China[C]//Proc. 5th Internat. Conf. Geochronology, Cosmochronology and Isotope Geology. Nikko National Park, Japan.

    [48]

    徐则民, 雍自权, 孙世雄, 1997. 西藏朗久地热田水文地球化学特征[J]. 桂林工学院学报, 17(1): 63-69

    Xu Z M, Yong Z Q, Sun S X, 1997. The hydrogeochemical features of langjiu geothermal field in Tibet[J]. Journal Of Guilin Institute Of Technology, 17(1): 63-69.

    [49]

    Zhang W J, Tan H B, Zhang Y F, et al. , 2015. Boron geochemistry from some typical Tibetan hydrothermal systems: origin and isotopic fractionation[J]. Applied Geochemistry, 63: 436-445. doi: 10.1016/j.apgeochem.2015.10.006

    [50]

    张朝锋, 史强林, 张玲娟, 2018. 青藏高原新生代岩浆活动与地热关系探讨[J]. 中国地质调查, 5(2): 18-24

    Zhang C F, Shi Q L, Zhang L J, 2018. Discussion on the relationship between Cenozoic magmatic activity and geotherm in Tibetan Plateau[J]. Geological Survey Of China, 5(2): 18-24.

    [51]

    张锡根, 1998. 西藏羊八井现代地下热水系统硫矿的成矿作用[J]. 化工矿产地质, (01): 1-10

    Zhang X G, 1998. Sulfur Mineralizati On Of Modern Geotheramal System In Yangbajing Basin Of Xizang[J]. Geology Of Chemical Minerals, (01): 1-10.

    [52]

    张燕飞, 2016. 藏−滇地热系统稀散元素分布与物源研究[D]. 南京: 河海大学博士毕业论文.

    Zhang Y F, 2016. Distribution and origin of some rare and dispersed elements in geothermal systems in Tibetan−Western Yunnan Geothermal Belt[D]. Nanjing: Doctoral Thesis of Hohai University.

    [53]

    张希友, 李国政, 2006. 长白山地热田地质及地球化学特征[J]. 吉林地质, 25(03): 25-30

    Zhang X Y, Li G Z, 2006. The geologic and geochemical characteristics of the Changbai Mountain geothermal field[J]. Jilin Geology, 25(03): 25-30.

    [54]

    Zhang Y F, Tan H B, Zhang W J, et al. , 2015. A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system[J]. Geochemistry International, 53(12): 1090-1106. doi: 10.1134/S0016702915120125

    [55]

    赵慈平, 冉华, 王云, 2012. 腾冲火山区的现代幔源氦释放: 构造和岩浆活动意义[J]. 岩石学报, 28(4): 1189-1204

    Zhao C P, Ran H, Wang Y, 2012. Present-day mantle-derived helium release in the Tengchong volcanic field, Southwest China: Implications for tectonics and magmatism[J]. Acta Petrologica Sinica, 28(4): 1189-1204.

    [56]

    赵平, 多吉, 梁廷立, 等, 1998. 西藏羊八井地热田气体地球化学特征[J]. 科学通报, (07): 691-696 doi: 10.3321/j.issn:0023-074X.1998.07.004

    Zhao P, Duo J, Liang T L, et al. , 1998. Gas geochemical characteristics of Yangbajing geothermal field in Tibet[J]. Chinese Science Bulletin, (07): 691-696. doi: 10.3321/j.issn:0023-074X.1998.07.004

    [57]

    赵平, Kennedy M, 多吉, 等, 2001. 西藏羊八井热田地热流体成因及演化的惰性气体制约[J]. 岩石学报, (03): 497-503 doi: 10.3321/j.issn:1000-0569.2001.03.020

    Zhao P, Kennedy M, Duo J, et al. , 2001. Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet[J]. Acta Petrologica Sinica, 17(3): 497-503. doi: 10.3321/j.issn:1000-0569.2001.03.020

    [58]

    赵元艺, 崔玉斌, 赵希涛, 2010. 西藏扎布耶盐湖钙华岛钙华的地质地球化学特征及意义[J]. 地质通报, 29(1): 124-141 doi: 10.3969/j.issn.1671-2552.2010.01.015

    Zhao Y Y, Cui Y B, Zhao X T, 2010. Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China[J]. Geological Bulletin of China, 29(1): 124-141. doi: 10.3969/j.issn.1671-2552.2010.01.015

    [59]

    郑绵平, 向军, 魏新俊, 等, 1989. 青藏高原盐湖[M]. 北京: 北京科学技术出版社, 1 − 470

    Zheng M P, Xiang J, Wei X J, et al. , 1989. Salt Lake in Qinghai−Tibet Plateau[M]. Beijing: Beijing Science and Technology Press, 1 − 470.

    [60]

    郑绵平, 王秋霞, 多吉, 等, 1995. 水热成矿新类型: 西藏铯硅华矿床[M]. 北京: 地质出版社, 1 − 62

    Zheng M P, Wang Q X, Duo J, et al. , 1995. A New Type of Hydrothermal Deposit: Cesium− Bearing Geyserite in Tibet[M]. Beijing: Geological Publishing House, 1 − 62.

    [61]

    郑亚新, 章铭陶, 朱炳球, 等, 1992. 西藏地热系统的稀碱金属特征及开发利用潜力[J]. 自然资源学报, 7(3): 249-257 doi: 10.3321/j.issn:1000-3037.1992.03.007

    Zheng Y X, Zhang M T, Zhu B Q, et al. , 1992. The characteristics of rare-alkali metal of the Tibetan geothermal system and the potential of its exploitation and utilization[J]. Journal Of Natural Resources, 7(3): 249-257. doi: 10.3321/j.issn:1000-3037.1992.03.007

    [62]

    朱允铸, 吴必豪, 1990. 从新构造运动看察尔汗盐湖的形成[J]. 地质学报, 64(1): 13-21 doi: 10.19762/j.cnki.dizhixuebao.1990.01.002

    Zhu Y Z, Wu B H, 1990. The formation of the qarhan saline lakes as vie-wed from the neotectonic movement[J]. Acta Petrologica Sinica, 64(1): 13-21. doi: 10.19762/j.cnki.dizhixuebao.1990.01.002

  • 加载中

(3)

(1)

计量
  • 文章访问数:  943
  • PDF下载数:  117
  • 施引文献:  0
出版历程
收稿日期:  2022-11-08
修回日期:  2022-12-13
录用日期:  2022-12-13
刊出日期:  2023-06-30

目录