川西阿坝州壤古温泉成因机制研究:来自水文地球化学和地球物理勘探的证据

章旭, 张文, 吕国森, 余中友, 代倩. 2023. 川西阿坝州壤古温泉成因机制研究:来自水文地球化学和地球物理勘探的证据. 沉积与特提斯地质, 43(2): 388-403. doi: 10.19826/j.cnki.1009-3850.2023.04007
引用本文: 章旭, 张文, 吕国森, 余中友, 代倩. 2023. 川西阿坝州壤古温泉成因机制研究:来自水文地球化学和地球物理勘探的证据. 沉积与特提斯地质, 43(2): 388-403. doi: 10.19826/j.cnki.1009-3850.2023.04007
ZHANG Xu, ZHANG Wen, LÜ Guosen, YU Zhongyou, DAI Qian. 2023. Geochemical, Geophysical Genesis of the Ranggu Geothermal Spring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388-403. doi: 10.19826/j.cnki.1009-3850.2023.04007
Citation: ZHANG Xu, ZHANG Wen, LÜ Guosen, YU Zhongyou, DAI Qian. 2023. Geochemical, Geophysical Genesis of the Ranggu Geothermal Spring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388-403. doi: 10.19826/j.cnki.1009-3850.2023.04007

川西阿坝州壤古温泉成因机制研究:来自水文地球化学和地球物理勘探的证据

  • 基金项目: 国家自然科学基金(42072313,42102334),四川省科技厅项目(2022NSFSC1084, 2022NSFSC0413, 2023YFS0356), 四川省自然资源厅科研项目经费资助(KJ-2023-36),西南交通大学培育项目(2682021ZTPY063, 2682022ZTPY064)
详细信息
    作者简介: 章旭(1987—),男,工程师,主要从事水文地质、地热地质及环境地质调查研究工作。E-mail:497416206@qq.com
    通讯作者: 张文(1985—),男,高级工程师,主要从事水工环调查评价研究工作。E-mail:3463287@qq.com
  • 中图分类号: P314

Geochemical, Geophysical Genesis of the Ranggu Geothermal Spring in Aba Prefecture, Western Sichuan: Evidence from Hydrogeochemical and Geophysical Exploration

More Information
  • 地热资源是一种清洁低碳、储量丰富、安全优质的可再生能源,大力开发利用地热资源,对落实“碳达峰、碳中和”战略目标具有重要意义。壤古温泉位于青藏高原东南缘川西阿坝州壤塘县,为松潘-甘孜褶皱带地热资源空白区钻获的优质地热资源,井口水温39.5℃,自流流量1500 m3/d,属富含偏硅酸、偏硼酸、锶的氟、锂优质热矿水,具有极高的医疗价值。文章以壤古温泉为研究对象,通过水文地球化学、地球物理特征研究,探讨了地热形成机制。结果表明:壤古温泉pH值6.7~7.1,溶解性总固体2050~2760 mg/L,水化学类型为HCO3-Na型,水岩作用强烈。其氢氧同位素分布于全球大气降水方程线附近,说明热水主要为大气降水补给。Na-K-Mg平衡图表现为未成熟水,表明热水受裂隙潜水或地表冷水强烈混合作用。基于传统地热温标、硅焓混合模型、Cl校正估算热储温度为138~183.3℃,冷水混合比例为77.9~84.3%。综合地球物理勘探、钻探揭露特征,本文构建了壤古温泉成因概念模型,可为壤古温泉的开发利用提供理论支撑。

  • 加载中
  • 图 1  (a) 大地构造位置图;(b) 区域地质图;(c)壤古温泉钻孔位置;(d) B-B’剖面图

    Figure 1. 

    图 2  (a) 常量组分Schoeller特征图和(b) 水化学宏量组分Piper图

    Figure 2. 

    图 3  吉布斯图解:(a) Cl/(Cl+HCO3) vs. TDS, (b) Na+/(Na++Ca2+) vs. TDS(Gibbs, 1970)和阳离子交换关系判别图:(c) Na++K+-Cl vs. Ca2++Mg2+-(SO42-+HCO3)(Ren et al., 2021); (d) CAI-Ⅰ vs. CAI-Ⅱ(Zhang et al., 2021

    Figure 3. 

    图 4  含水层岩性判别图:(a) Ca2+/Na+ vs Mg2+/Na+, (b) Ca2+/Na+ vs HCO3/Na+Gaillardet et al., 1999)和离子比值关系图:(c) HCO3 vs. Na++K+, (d) Ca2+ vs. Mg2+, (e) Ca2+ vs. SO42−, (f) Ca2++Mg2+ vs. HCO3+SO42−

    Figure 4. 

    图 5  壤古温泉及周边冷水样品δ2H-δ18O同位素关系图

    Figure 5. 

    图 6  (a) Na-K-Mg三角图(Giggenbach, 1988)和 (b) SiO2溶解判别图(Giggenbach and Glover, 1992

    Figure 6. 

    图 7  壤古温泉的(a, b, c) 硅-焓方程图解(图中括号里左为初始热储温度,右为冷水混合比例), (d, e, f) 硅-焓图解,(g, h, l) 主要铝硅酸盐矿物的lg(Q/K)-T图

    Figure 7. 

    图 8  音频大地电磁法综合解释图:(a) L1剖面,(b) L2剖面,(c) L1局部放大图,(d) L2局部放大图

    Figure 8. 

    图 9  高密度电阻率法剖面图解译图: (a) W1剖面, (b) W2剖面

    Figure 9. 

    图 10  ZK02孔内电视成像(a)和;ZK02钻孔岩芯照片(b)

    Figure 10. 

    图 11  壤古温泉的成因模型

    Figure 11. 

    表 1  水化学参数测试结果

    Table 1.  Experimental results of hydrochemical parameters

    样品编号采样位置样品类型采样高程井深SrFBLiδDδ18O
    RG01壤古温泉(6月)温泉水3083231.62.053.031.16.12−120.3−16.5
    RG02壤古温泉(9月)温泉水3083231.61.952.599.65.55\\
    RG03壤古温泉(12月)温泉水3083231.61.662.828.16.28\\
    DB01俄尔柯溪水地表水3086\0.188\0.0070.003−120.1−16.31
    S01壤塘泉水S01冷泉水3185\0.417\0.0200.008−112.7−14.85
    S02壤塘泉水S02冷泉水3662\0.169\0.0130.002−112−15.22
    S03吾伊泉水冷泉水3121\1.550\0.1150.089−122.9−15.96
    S04马来泉水冷泉水3046\0.926\0.2300.072−123.9−16.16
    样品编号pHTDSSiO2K+Na+Mg2+Ca2+HCO3SO42-Cl平衡误差水化学类型
    RG017.1276039.2381.473743.0271310121.816.8+1.3HCO3-Na
    RG026.7205027.8565.248436.1232235314.316.0−4.6HCO3-Na
    RG036.8232031.7762.057939.1266259116.516.8−0.5HCO3-Na
    DB018.32515.820.4122.515.936.5161.569.30.9360.3HCO3·SO4-Ca·Mg
    S017.926812.690.3524.820.935.1222.456.61.97−3.1HCO3-Ca·Mg
    S027.72746.380.5321.220.143.5245.451.90.939−3.5HCO3-Ca·Mg
    S037.08425.456.1412169.469.5782.71494.32−4.5HCO3-Na·Mg
    S046.35316.553.374539.483.3560.345.44.07−3.8HCO3-Ca·Mg
     注:采样高程和井深的单位为m;TDS和水化学组分的单位为mg/L;平衡误差的单位为%;“\”表示未测量。
    下载: 导出CSV

    表 2  δ2H-δ18O同位素补给高程计算结果

    Table 2.  Calculation results of recharge elevation by δ2H- δ18O isotopes

    取样点名称采样高程(m)δD(V-SMOW)‰δ18O(V-SMOW)‰补给高程(m)
    壤古温泉3083−120.3−16.054067
    壤塘泉水(S01)3185−112.7−14.853877
    壤塘泉水(S02)3662−112.0−15.224327
    吾依泉水(S03)3121−122.9−15.964205
    马来泉水(S04)3046−123.9−16.164169
    下载: 导出CSV

    表 3  SiO2(石英)温标热储温度计算结果

    Table 3.  Calculation results of reservoir temperature by SiO2(Quartz) thermometer

    样品编号温度(℃)无蒸汽损失(℃)最大蒸汽损失(℃)
    RG0139.690.893.0
    RG0239.376.480.4
    RG0339.581.885.1
    下载: 导出CSV

    表 4  Cl校后的SiO2温标结果

    Table 4.  Results of SiO2 temperature scale after Cl calibration

    样品编号校正前校正后
    无蒸汽损失(℃)最大蒸汽损失(℃)无蒸汽损失(℃)最大蒸汽损失(℃)
    RG0190.893.0155.5148.1
    RG0276.480.4153.8146.6
    RG0381.885.1155.5148.1
    下载: 导出CSV
  • [1]

    Blasch K W, Bryson J R, 2007. Distinguishing sources of ground water recharge by using δ2H and δ18O[J]. Ground Water, 45(3): 294-308. doi: 10.1111/j.1745-6584.2006.00289.x

    [2]

    Chandrajith R, Barth J A C, Subasinghe N D, et al. , 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients[J]. Journal of Hydrology, 476: 360-369. doi: 10.1016/j.jhydrol.2012.11.004

    [3]

    陈墨香, 汪集旸, 1994. 中国地热研究的回顾和展望[J]. 地球物理学报, 37(S1): 320-338

    Chen M X, Wang J Y, 1994. Review and prospect on geothermal studies in China[J]. Acta Geophysica Sinica, 37(S1): 320-338.

    [4]

    Cheng Y Z, Pang Z H, Kong Y L, et al. , 2022. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey[J]. Geothermics, 102: 102386. doi: 10.1016/j.geothermics.2022.102386

    [5]

    Craig H, 1961. Isotopic variations in meteoric waters[J]. Science, 133(346): 1702-1703.

    [6]

    Craig J, Absar A, Bhat G, et al. , 2013. Hot springs and the geothermal energy potential of Jammu & Kashmir State, N. W. Himalaya, India[J]. Earth-Science Reviews, 126: 156-177. doi: 10.1016/j.earscirev.2013.05.004

    [7]

    Fournier R O, 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50. doi: 10.1016/0375-6505(77)90007-4

    [8]

    Fournier R O, 1979. Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems[J]. Journal of Volcanology and Geothermal Research, 5(1-2): 1-16. doi: 10.1016/0377-0273(79)90029-5

    [9]

    傅广海, 殷继成, 2009. 四川省甘孜州温泉资源分布、成因及旅游开发探讨[J]. 西北大学学报: 自然科学版, 39(1): 142-148

    Fu G H, Yin J C, 2009. A study on the distribution and general mechanism about the hot spring as well as tourism development in Ganzi of Sichuan Province[J]. Journal of Northwest University (Natural Science Edition), 39(1): 142-148.

    [10]

    Gaillardet J, Dupré B, Louvat P, et al. , 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 159(1): 3-30.

    [11]

    Gibbs R J, 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088

    [12]

    Giggenbach W F, 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    [13]

    Giggenbach W F, Glover R B, 1992. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand[J]. Geothermics, 21(1-2): 121-140. doi: 10.1016/0375-6505(92)90073-I

    [14]

    韩建光, 蒋宗霖, 田颖, 等, 2008. 中国地热资源及开发利用[J]. 消费导刊, 23: 39-40

    Han J G, Jiang Z L, Tian Y, et al. , 2008. China's geothermal resources and their development and utilization [J]. Consumer Guide, 23: 39-40.

    [15]

    Hähnlein S, Bayer P, Ferguson G, et al. 2013. Sustainability and policy for the thermal use of shallow geothermal energy[J]. Energy Policy, 59: 914 − 925.

    [16]

    胡泽祥, 赵学钦, 李松, 等, 2022. 色达—松潘断块温泉水文地球化学特征及成因分析[J]. 现代地质, 36(2): 484-493 doi: 10.19657/j.geoscience.1000-8527.2021.072

    Hu Z X, Zhao X Q, Li S, et al. , 2022. Geothermal hydrogeochemical characteristics and genetic analysis of the Seda-Songpan Fault Block[J]. Geoscience, 36(2): 484-493. doi: 10.19657/j.geoscience.1000-8527.2021.072

    [17]

    Kana J D, Djongyang N, Danwe R, et al. , 2015. A review of geophysical methods for geothermal exploration[J]. Renewable and Sustainable Energy Reviews, 44: 87-95. doi: 10.1016/j.rser.2014.12.026

    [18]

    Li J X, Yang G, Gideon S, et al. , 2018. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 75: 154-163. doi: 10.1016/j.geothermics.2018.04.008

    [19]

    李世平, 黄锦捷, 陶毅, 2018. 音频大地电磁法与高密度电法技术在实际中的对比应用[J]. 低碳世界, 5: 332-333 doi: 10.3969/j.issn.2095-2066.2018.01.216

    Li S P, Huang J J, Tao Y, 2018. Comparative application of audio frequency magnetotelluric method and high-density electrical method in practice [J]. Low Carbon World, 5: 332-333 doi: 10.3969/j.issn.2095-2066.2018.01.216

    [20]

    Li X, Huang X, Liao X, et al. , 2020. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514. doi: 10.3390/ijerph17020500

    [21]

    Li Y M, Pang Z H, Yang F T, et al. , 2017. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China[J]. Journal of Asian Earth Sciences, 149: 134-144. doi: 10.1016/j.jseaes.2017.06.007

    [22]

    廖志杰, 1999. 腾冲火山和地热[J]. 地质论评, S1: 934-939 doi: 10.3321/j.issn:0371-5736.1999.z1.135

    Liao Z J, 1999. Volcanism and geothermal s in Tenchong County, Yunnan Province, China[J]. Geological Review, S1: 934-939. doi: 10.3321/j.issn:0371-5736.1999.z1.135

    [23]

    刘蓓莉, 1990. 区域岩石物性在地质工作中的应用[J]. 物探与化探, 14(1): 32-36

    Liu B L, 1990. The application of physical properties of regional rocks to geological work[J]. Geophysical and Geochemical Exploration, 14(1): 32-36.

    [24]

    刘蓓莉, 1994. 四川省岩石密度数据的分析及应用[J]. 物探与化探, 18(3): 232-237

    Liu B L, 1994. Analysis and application of density data of rocks from Sichuan Province[J]. Geophysical and Geochemical Exploration, 18(3): 232-237.

    [25]

    Lu L H, Pang Z H, Kong Y L, et al. , 2018. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 26(5): 1705-1719. doi: 10.1007/s10040-018-1721-6

    [26]

    Marques J M, Carreira P M M, Aires-Barros L, et al. , 2000. Nature and role of CO2 in some hot and cold HCO3/Na/CO2-rich Portuguese mineral waters: a review and reinterpretation[J]. Environmental Earth Sciences, 40(1-2): 53-63.

    [27]

    莫宣学, 2009. 青藏高原岩浆岩成因研究: 成果与展望[J]. 地质通报, 28(12): 1693-1703 doi: 10.3969/j.issn.1671-2552.2009.12.002

    Mo X X, 2009. A review of genesis study on magmatic rocks of the Qinghai-Tibet Plateau: achievements and remaining problems[J]. Geological Bulletin of China, 28(12): 1693-1703. doi: 10.3969/j.issn.1671-2552.2009.12.002

    [28]

    莫宣学, 2010. 青藏高原地质研究的回顾与展望[J]. 中国地质, 37(4): 841-853 doi: 10.3969/j.issn.1000-3657.2010.04.002

    Mo X X, 2010. A review and prospect of geological researches on the Qinghai-Tibet Plateau[J]. Geology in China, 37(4): 841-853. doi: 10.3969/j.issn.1000-3657.2010.04.002

    [29]

    Mongillo M A, Axelsson G, 2010. Preface to Geothermics Special Issue on sustainable geothermal utilization[J]. Geothermics, 39(4): 279-282. doi: 10.1016/j.geothermics.2010.09.011

    [30]

    Munoz G, 2014. Exploring for geothermal resources with electromagnetic methods[J]. Surveys in Geophysics, 35(1): 101-122. doi: 10.1007/s10712-013-9236-0

    [31]

    Peacock J R, Mangan M T, McPhee D, et al. , 2016. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics[J]. Geophysical Research Letters, 43(15): 7953-7962. doi: 10.1002/2016GL069263

    [32]

    Pang Z H, Reed M, 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods[J]. Geochimica et Cosmochimica Acta, 62(6): 1083-1091. doi: 10.1016/S0016-7037(98)00037-4

    [33]

    庞忠和, 樊志成, 汪集旸, 1990. 漳州盆地水热系统的氢氧稳定同位素研究[J]. 岩石学报, 4: 75-84 doi: 10.3321/j.issn:1000-0569.1990.01.008

    Pang Z H, Fan Z C, Wang J Y, 1990. The study on stable oxygen and hydrogen isotopes in the Zhangzhou Basin hydrothermal system[J]. Acta Petrologica Sinica, 4: 75-84. doi: 10.3321/j.issn:1000-0569.1990.01.008

    [34]

    Poage P A, Sjostrom D J, Goldberg J, et al. , 2000. Isotopic evidence for Holocene climate change in the northern Rockies from a goethite-rich ferricrete chronosequence[J]. Chemical Geology, 166(3-4): 327-340. doi: 10.1016/S0009-2541(99)00220-X

    [35]

    Ren X F, Li P Y, He X D, et al. , 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China[J]. Archives of Environmental Contamination and Toxicology, 80(1): 74–91 doi: 10.1007/s00244-020-00772-5

    [36]

    宋春林, 孙向阳, 王根绪, 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 24(11): 1860-1869 doi: 10.11870/cjlyzyyhj201511008

    Song C L, Sun X Y, Wang G X, 2015. A study on precipitation stable isotopes characteristics and vapor sources of the Subalpine Gongga Mountain, China[J]. Resources and Environment in the Yangtze Basin, 24(11): 1860-1869. doi: 10.11870/cjlyzyyhj201511008

    [37]

    Tian J, Pang Z H, Guo Q, et al. , 2018. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the eastern Himalayan Syntax[J]. Geothermics, 74: 92-105. doi: 10.1016/j.geothermics.2018.02.006

    [38]

    天娇, 庞忠和, 张睿, 2020. FixAl及同位素方法在EGS返排液研究中的应用[J]. 地学前缘, 27(1): 112-122 doi: 10.13745/j.esf.2020.1.13

    Tian J, Pang Z H, Zhang R, 2020. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems(EGS)[J]. Earth Science Frontiers, 27(1): 112-122. doi: 10.13745/j.esf.2020.1.13

    [39]

    Ta M M, Zhou X, Guo J, et al. , 2019. Hydrogeochemical characteristics and formation of the hot springs occurring in the plunging ends of an anticline in Chongqing, eastern Sichuan Basin, China[J]. Environmental Earth Sciences, 78(15): 468-468 doi: 10.1007/s12665-019-8486-7

    [40]

    Wang C G, Zheng M P, 2019. Hydrochemical characteristics and evolution of hot fluids in the Gudui geothermal field in Comei County, Himalayas[J]. Geothermics, 81: 243-258. doi: 10.1016/j.geothermics.2019.05.010

    [41]

    王国建, 宁丽荣, 李广之, 等, 2021. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析[J]. 地质论评, 67(1): 117-128 doi: 10.16509/j.georeview.2021.01.009

    Wang G J, Ning L R, Li G Z, et al. , 2021. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system[J]. Geological Review, 67(1): 117-128. doi: 10.16509/j.georeview.2021.01.009

    [42]

    Wright P M, Ward, S H, Ross, H P, et al. , 1985. State-of-the-art geophysical exploration for geothermal resources[J]. Geophysics, 50(12): 2666-2696. doi: 10.1190/1.1441889

    [43]

    肖洒, 2020. 基于天然镭氡同位素的基岩裂隙水文地质参数估算研究[D]. 哈尔滨: 哈尔滨工业大学.

    Xiao S, 2020. Estimation of hydrogeological parameters of a fractured aquifer system with natural radium and radon isotopes[D]. Harbin: Harbin Institute of Technology.

    [44]

    Xu T F, Feng G H, Shi Y, 2014. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 144(PA): 179-193.

    [45]

    Yu J S, Zhang H B, Yu F J, et al. , 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang[J]. Geochemistry, 3(2): 93-101. doi: 10.1007/BF03179285

    [46]

    张林, 雷宛, 胡旭, 等, 2018. 高密度电法与音频大地电磁法在四川某地热勘探中的应用[J]. 勘察科学技术, 6: 55-58 doi: 10.3969/j.issn.1001-3946.2018.03.012

    Zhang L, Lei W, Hu X, et al. , 2018. Application of high-density electrical method and Audio Magnetotelluric method in a geothermal exploration in Sichuan Province[J]. Site Investigation Science and Technology, 6: 55-58. doi: 10.3969/j.issn.1001-3946.2018.03.012

    [47]

    Zhang Y H, Dai Y S, Wang Y, et al. , 2021. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China[J]. Science of The Total Environment, 784: 147186. doi: 10.1016/j.scitotenv.2021.147186

    [48]

    张云辉, 2018. 鲜水河断裂康定−磨西段地热系统成因及开发利用研究[D]. 成都: 成都理工大学.

    Zhang Y H, 2018. Research on genesis and development of the geothermal system in the Kangding−Moxi segment of the Xianshuihe fault[D]. Chengdu: Chengdu University of Technology.

    [49]

    张云辉, 李晓, 许模, 等, 2021. 鲜水河地热带道孚地区地热水水文地球化学特征研究[J]. 安全与环境工程, 28(3): 42-51 doi: 10.13578/j.cnki.issn.1671-1556.20201201

    Zhang Y H, Li X, Xu M, et al. , 2021. Hydrogeochemical characteristics of geothermal waters in the Daofu area of the Xianshuihe geothermal belt[J]. Safety and Environmental Engineering, 28(3): 42-51. doi: 10.13578/j.cnki.issn.1671-1556.20201201

  • 加载中

(11)

(4)

计量
  • 文章访问数:  2059
  • PDF下载数:  117
  • 施引文献:  0
出版历程
收稿日期:  2023-01-12
修回日期:  2023-03-03
录用日期:  2023-03-03
刊出日期:  2023-06-30

目录