细粒富钛料制粒工艺技术研究现状

侯晓磊, 陈凤, 郑富强, 王帅, 杨凌志, 郭宇峰. 细粒富钛料制粒工艺技术研究现状[J]. 矿产综合利用, 2022, 43(4): 100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018
引用本文: 侯晓磊, 陈凤, 郑富强, 王帅, 杨凌志, 郭宇峰. 细粒富钛料制粒工艺技术研究现状[J]. 矿产综合利用, 2022, 43(4): 100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018
Hou Xiaolei, Chen Feng, Zheng Fuqiang, Wang Shuai, Yang Lingzhi, Guo Yufeng. Research Status of Granulation Technology Process of Fine-Grade Rich Titanium Material[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4): 100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018
Citation: Hou Xiaolei, Chen Feng, Zheng Fuqiang, Wang Shuai, Yang Lingzhi, Guo Yufeng. Research Status of Granulation Technology Process of Fine-Grade Rich Titanium Material[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4): 100-105. doi: 10.3969/j.issn.1000-6532.2022.04.018

细粒富钛料制粒工艺技术研究现状

  • 基金项目: 国家自然科学基金青年科学基金(51904348);湖南省自然科学基金青年基金项目(2019JJ50816)
详细信息
    作者简介: 侯晓磊(1993-),男,硕士研究生,研究方向为钢铁冶金
    通讯作者: 陈凤(1987-),女,副教授,研究方向为钢铁冶金。
  • 中图分类号: TD952;TF09

Research Status of Granulation Technology Process of Fine-Grade Rich Titanium Material

More Information
  • 钛资源经过富集提钛、除杂处理,获得满足沸腾氯化法对炉料要求的富钛料。但细粒富钛料占比多,难以满足沸腾氯化法对炉料粒度的要求。细粒富钛料在沸腾氯化过程中易导致沟流、节涌,细颗粒逸出量大等问题,造成沸腾氯化率低、炉料反应不充分,且严重影响沸腾氯化工艺的顺行。因此,对细粒级富钛料进行制粒处理,使其满足原料粒度要求,是制备出优质沸腾氯化炉料的关键问题之一。本文详细总结了细粒级富钛料颗粒制粒的方法及所需粘结剂,分析了目前细粒富钛料制粒的方法及采用的粘结剂中存在的问题,并指出采用固结温度低的无机或有机-无机复合粘结剂,对细粒级富钛料进行流态化制粒是有利于实现工业化的发展方向。

  • 加载中
  • [1]

    M H El-Sadek, O A Fouad, M B Morsi, et al. Controlling conditions of fluidized bed chlorination of upgraded titania slag[J]. Transactions of the Indian Institute of Metals, 2019, 72(2).

    [2]

    NIU L P, NI P Y, ZHANG T G, et al. Mechanism of fluidized chlorination reaction of Kenya natural rutile ore[J]. Rare Metals, 2014, 33(4):485-492. doi: 10.1007/s12598-014-0281-8

    [3]

    刘娟. 攀枝花钛资源制备沸腾氯化用富钛原料研究进展[J]. 中国有色冶金, 2018, 47(6):49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014

    LIU J. Development of study on preparation of Ti-rich raw material for boiling chlorination from Panzhihua titanium resources[J]. China Nonferrous Metallurgy, 2018, 47(6):49-53. doi: 10.3969/j.issn.1672-6103.2018.06.014

    [4]

    李文光, 张瑛. 我国金红石矿产资源特点及开发利用[J]. 中国化工, 1997(4):19-20.

    LI W G, ZHANG Y. Characteristics and development of rutile mineral resources in China[J]. China Chemical Industry, 1997(4):19-20.

    [5]

    王雅静, 张宗华, 高利坤. 某难选金红石矿选矿试验研究[J]. 矿产综合利用, 2008(1):7-10. doi: 10.3969/j.issn.1000-6532.2008.01.002

    WANG Y J, ZHANG Z H, GAO L K. Experiment research on the mineral processing technology for a refractory rutile ore[J]. Multipurpose Utilization of Mineral Resources, 2008(1):7-10. doi: 10.3969/j.issn.1000-6532.2008.01.002

    [6]

    岳铁兵, 曹进成, 魏德州, 等. 磨矿分级流程对细粒金红石矿选别的影响[J]. 化工矿物与加工, 2004(8): 15-17.

    YUE T B, CAO J C, WEI D Z, et al. A influence of grinding and classification flowsheet on mineral processing of fine rutile ore[J]. Industrial Minerals and Processing. 2004(8): 15-17.

    [7]

    叶恩东. 攀枝花钛精矿制备高品质富钛料工艺分析[J]. 化工生产与技术, 2013, 20(4): 38-40.

    YE E D. Process analysis of the high quality titanium rich material prepared by Panzhihua titanium concentrate[J]. Chemical Production and Technology. 2013, 20(4): 38-40.

    [8]

    陈辉. 沸腾氯化法生产四氯化钛的设备及工艺改进[J]. 湖南有色金属, 2016, 32(2): 36-39.

    CHEN H. Improvement of equipment and process for producing titanium chloride four boiling chlorination[J]. Hunan Nonferrous Metals. 2016, 32(2): 36-39.

    [9]

    WEN C Y, YU Y H. Mechanics of fluidization[J]. Chem. engng Prog. symp. ser, 1966, 62:100-111.

    [10]

    贺友多. 圆盘造球机的造球运动分析[J]. 烧结球团, 1981(5): 1-7.

    HE Y D. Analysis of the pelleting movement of the disk granulator[J]. Sintering and Pelletizing. 1981(5): 1-7.

    [11]

    Botha Pieter Adriaan (ZA); Bessinger Deon (ZA); Dippenaar Benjamin Alexander (ZA). Agglomeration of titania[P]. US: 7, 931, 886 B2. 2011-04-26.

    [12]

    Gueguin Michel. Titanium slag-coke granules suitable for fluid bed chlorination[P]. US: 4, 187, 11 7. 1980-04-05.

    [13]

    CHEN X L, ZHOU X W, GAN M, et al. Study on the fluidized bed granulation of fine-grained rutile concentrate[J]. Powder Technology, 2017(315):53-59.

    [14]

    傅备德, 潘志明, 张万琦. V型混合机的工作原理与应用[J]. 化学世界, 1965(3):134-137. doi: 10.19500/j.cnki.0367-6358.1965.03.020

    FU B D, PAN Z M, ZHANG W Q. Working principle and application of V-mixer[J]. Chemical World, 1965(3):134-137. doi: 10.19500/j.cnki.0367-6358.1965.03.020

    [15]

    Hall John Sydney (Au), Carey Ken George (Au), Hollitt Michael John (Au). Sintered high titanium agglomerates[P]. US: 6149712. 2000-11-21.

    [16]

    李进卫. 无机胶粘剂性能、组成、制备和应用分析[J]. 玻璃钢, 2018(2):6-13.

    LI J W. Inorganic adhesive properties, composition, preparation and application analysis[J]. Fiber Reinforced Plastics, 2018(2):6-13.

    [17]

    蒋训雄, 蒋伟, 汪胜东等. 细粒级富钛料造粒方法[P]. 中国: 201610712820.2. 2017-01-11.

    JIANG X X, JIANG W, WANG S D, et al. Granulation method for fine-fraction titanium-rich material[P]. CN: 106319246. 2017-01-11.

    [18]

    叶恩东, 缪辉俊, 程晓哲等. 细粒级人造金红石造粒结合剂及其使用方法[P]. 中国: 201510736993.3. 2016-01-27.

    YE E D, MIAO H J, CHEN X Z, et al. Fine-fraction artificial rutile granulation binding agent and use method thereof[P]. CN: 105271390. 2016-01-27.

    [19]

    陈祝春, 陆平, 王建鑫等. 一种细粒级钛原料的团粒方法[P]. 中国: 201210191764.4. 2012-11-14.

    CHEN Z C, LU P, WANG J X, et al. Method for aggregating fine fraction titanium raw materials[P]. CN: 102776365A. 2012-11-14.

    [20]

    陈树忠, 英明. 一种钛焦颗粒的造粒制备方法[P]. 中国: 201410254963.4. 2014-09-24.

    CHEN S Z, YING M. Preparation method for making titanium coke granules[P]. CN: CN104058450A. 2014-09-24.

  • 加载中
计量
  • 文章访问数:  695
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2020-06-30
刊出日期:  2022-08-25

目录