Study on the Occurrence State of Titanium in a Titanium-containing Ore
-
摘要:
为研究某含钛矿石是否具有综合利用价值,通过光学显微镜、X射线衍射仪、扫描电镜及矿物自动分析仪、电子探针等分析技术,对其物质组成、目的矿物嵌布特征、有价元素赋存状态等开展了系统的研究。结果表明,该矿石为含铁、钛的闪长岩类,矿石中TiO2品位为2.27%、TFe品位为11.36%,矿石中的铁品位低,没有达到铁矿石的最低工业品位。矿石中的TiO2主要赋存于钛铁矿及钛铁闪石中,分布率分别为40.02%和44.75%,占总分布率的84.79%;少量分布在榍石、金红石和磁铁矿(赤铁矿)中,分布率分别为7.93%、5.67%和1.59%,其中钛铁矿及金红石的矿物含量仅为1.86%和0.13%。矿石中金红石含量低,多与榍石、钛铁矿等连生,粒度微细,金红石中含有钙、铁、硅等杂质元素,这会直接影响金红石精矿的品位及回收率,采用阶磨阶选流程及重选、磁选及浮选的联合工艺,可有效回收矿石中的有用矿物。
Abstract:In order to study whether a titanium-containing ore has comprehensive utilization value, its material composition, target mineral dissemination characteristics and occurrence state of valuable elements were systematically studied by means of optical microscope, X-ray diffractometer, scanning electron microscope, mineral automatic analyzer and electron probe.The results show that the ore is a diorite containing iron and titanium. The grade of TiO2 in the ore is 2.27% and the grade of TFe is 11.36%. The iron grade in the ore is low and does not reach the lowest industrial grade of iron ore. TiO2 in ore mainly exists in ilmenite and ilmenite amphibole, and the distribution rates are 40.02% and 44.75% respectively, accounting for 84.79% of the total distribution rate. A small amount of TiO2 is distributed in titanite, rutile and magnetite ( hematite ), with distribution rates of 7.93%, 5.67 % and 1.59%, respectively. The mineral content of ilmenite and rutile is only 1.86% and 0.13%. The content of rutile in the ore is very low, which is mostly associated with titanite and ilmenite, and the particle size is fine. Rutile contains calcium, iron, silicon and other impurity elements, which will directly affect the grade and recovery rate of rutile concentrate. The useful minerals in the ore can be effectively recovered by using the stage grinding stage selection process and the combined process of gravity separation, magnetic separation and flotation.
-
Key words:
- Titanium /
- Mineral composition /
- Dissemination characteristics /
- Occurrence state
-
表 1 原矿化学多元素分析/%
Table 1. Chemical analysis results of the ore
CaO MgO K2O TiO2 SiO2 Al2O3 TFe CuO ZnO Na2O SO3 P2O5 Nb Ta 11.154 7.263 0.412 2.270 40.252 18.961 11.360 0.009 0.016 2.231 0.431 0.139 0 0 表 2 矿石中矿物组成及含量/%
Table 2. Mineral composition and content of the ore
钛铁矿 金红石 磁铁矿/赤铁矿 钛磁铁矿 黄铁矿 榍石 磷灰石 1.86 0.13 9.15 0.47 0.02 0.48 0.23 角闪石 辉石 钛铁闪石 绿帘石 钾长石 斜长石 绿泥石 1.26 0.08 38.68 8.93 0.03 30.91 5.10 黑云母 白云母 碳酸盐矿物 石英 黏土矿物 其他 总计 0.35 1.57 0.10 0.24 0.18 0.23 100.00 表 3 钛铁矿电子探针微区分析元素含量/%
Table 3. Element composition and content of the ilmenite by EPMA
点号 MgO CaO FeO MnO Al2O3 SiO2 TiO2 总量 1 0.14 0.66 45.11 3.53 0.03 0.03 49.55 99.05 2 0.14 1.13 43.75 4.62 0.01 0.04 48.54 98.22 3 0.14 2.02 42.93 6.23 0.00 0.00 47.57 98.89 4 0.12 1.43 44.33 5.18 0.00 0.01 47.00 98.07 5 0.30 1.15 44.58 4.22 0.01 0.03 48.12 98.41 平均 0.17 1.28 44.14 4.76 0.01 0.02 48.16 98.53 表 4 磁铁矿电子探针微区分析元素含量/%
Table 4. Element composition and content of the magnetite by EPMA
点号 MgO CaO FeO MnO Al2O3 SiO2 TiO2 总量 1 0.00 0.04 92.53 0.00 0.06 0.02 0.13 92.77 2 0.04 0.15 90.12 0.02 0.05 0.05 0.05 90.47 3 0.02 0.16 90.71 0.00 0.07 0.10 0.00 91.05 4 0.00 0.06 92.37 0.00 0.04 0.02 0.38 92.87 5 0.01 0.02 91.95 0.00 0.13 0.00 0.00 92.10 6 0.00 0.04 92.58 0.00 0.04 0.05 1.81 94.52 平均 0.01 0.08 91.71 0.00 0.06 0.04 0.39 92.30 表 5 钛铁闪石的电子探针微区分析元素含量/%
Table 5. Element composition and content of the kaersutite by EPMA
点号 MgO CaO FeO MnO Al2O3 SiO2 TiO2 Na2O K2O 总量 1 14.62 10.56 12.55 0.20 12.83 42.71 2.15 2.94 0.45 99.01 2 8.95 7.32 25.44 0.43 10.68 41.35 2.78 1.63 0.21 98.78 3 13.67 10.67 10.94 0.20 11.89 44.96 3.17 2.86 0.48 98.84 4 14.87 10.75 11.16 0.20 12.58 43.48 2.90 2.74 0.50 99.17 5 13.58 10.60 9.57 0.18 12.48 46.74 1.98 2.98 0.44 98.53 平均 13.14 9.98 13.93 0.24 12.09 43.85 2.59 2.63 0.41 98.86 表 6 原矿中主要矿物的单体解离度/%
Table 6. Monomer dissociation of main minerals in the ore
粒级/mm 钛铁矿 金红石 榍石 磁铁矿 钛铁闪石 斜长石 绿泥石 绿帘石 -0.25+0.15 36.29 11.66 34.68 56.91 74.36 64.01 45.52 39.64 -0.15+0.075 51.30 20.65 34.13 73.93 83.68 79.28 62.85 57.57 -0.075+0.045 63.40 34.29 51.55 81.25 78.20 77.77 73.92 66.43 -0.045 86.18 70.25 83.26 93.23 89.79 92.72 92.63 88.91 表 7 矿石中钛的金属量平衡
Table 7. Metal mass balance of titanium content in the ore
矿物分类 矿物名称 矿物含量/% 矿物中的TiO2品位/% Ti金属量
/%Ti在各矿物中的分布率/% 金属矿物 钛铁矿 1.860 48.160 0.896 40.02 金红石 0.130 97.720 0.127 5.67 榍石 0.470 37.790 0.178 7.93 磁铁矿(赤铁矿) 9.150 0.390 0.036 1.59 脉石矿物 钛铁闪石 38.680 2.590 1.002 44.75 绿泥石 5.100 0.012 0.001 0.03 总计 总计 2.239 100.00 原矿 原矿 2.270 Fe的平衡系数 2.239/2.270=0.986 -
[1] 陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105.
CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.
[2] 杨耀辉, 惠博, 严伟平, 等. 攀西微细粒钛铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022
YANG Y H, HUI B, YAN W P, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022
[3] 陆显志, 路沛瑶, 陈英杰, 等. 云南某钛铁矿的工艺矿物学研究[J]. 矿产综合利用, 2022(2):206-210. doi: 10.3969/j.issn.1000-6532.2022.02.036
LU X Z, LU P Y, CHEN Y J, et al. Study on process mineralogy of ilmenite in Yunnan Province[J]. Multipurpose Utilization of Mineral Resources, 2022(2):206-210. doi: 10.3969/j.issn.1000-6532.2022.02.036
[4] 王越, 王婧, 周满赓, 等. 工艺矿物学在矿产资源综合利用水平监侧中的重要作用[J]. 中国矿业, 2013, 22(4):46-50. doi: 10.3969/j.issn.1004-4051.2013.04.013
WANG Y, WANG J, ZHOU M G, et al. The important role of the process mineralogy in the level monitoring of multipurpose utilization of mineral resources[J]. China Mining Magazine, 2013, 22(4):46-50. doi: 10.3969/j.issn.1004-4051.2013.04.013
[5] 王越, 王婧, 李潇雨, 等. 川西某金矿工艺矿物学研究及对选矿工艺的影响[J]. 矿产综合利用, 2021(4):206-210. doi: 10.3969/j.issn.1000-6532.2021.04.034
WANG Y, WANG J, LI X Y, et al. Process mineralogy study of the gold deposit in Western Sichuan area and its influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2021(4):206-210. doi: 10.3969/j.issn.1000-6532.2021.04.034
[6] 仝丽娟, 张广伟. 工艺矿物学在选矿中的应用[J]. 现代矿业, 2014, 548:68-78. doi: 10.3969/j.issn.1674-6082.2014.08.025
TONG L J, ZHANG G W. Application of process mineralogy in benefication[J]. Modern Mining, 2014, 548:68-78. doi: 10.3969/j.issn.1674-6082.2014.08.025
[7] 肖颖, 管川, 徐晓霞. 钒钛磁铁矿铁钛物相联测分析方法[J]. 矿产综合利用, 2019(4):98-102. doi: 10.3969/j.issn.1000-6532.2019.04.021
XIAO Y, GUAN C, XU X X. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):98-102. doi: 10.3969/j.issn.1000-6532.2019.04.021