-
摘要:
本文针对粗锌中金属元素的蒸发行为,选取Cd-Zn、Bi-Zn和Bi-Sn-Zn体系进行了真空蒸馏蒸发动力学实验,测定了合金中组元锌的蒸发速率。用Langmuir公式计算了锌的蒸发速率,结果与实验相吻合,表明了该方法的可行性。计算了三种合金体系中锌的凝结系数,关联了组元活度系数,解释了合金体系中组元间相互作用对元素蒸发速率的影响,研究结果对粗金属真空蒸馏分离提纯及实验设备的优化设计具有指导意义。
-
关键词:
- 粗锌 /
- Langmuir公式 /
- 凝结系数 /
- 蒸发速率常数
Abstract:Based on the metal elements contained in crude zinc, the evaporation kinetic experiments of the Cd-Zn, Bi-Zn and Bi-Sn-Zn systems in vacuum distillation were carried out. The Langmuir formula was used for theoretical prediction of evaporation rate. The results are in good agreement with the experimental data. It indicates that the method of evaporation rate calculation is applicable. The condensation coefficients of zinc in the alloys were calculated. The relationship between the interaction and the evaporation rate of components in the alloys was discussed. It will be helpful to the separation and purification of crude zinc and the optimization of experimental equipmentby vacuum distillation.
-
Key words:
- Crude zinc /
- Langmuir formula /
- Condensation coefficient /
- Evaporation rate constant
-
表 1 合金成分
Table 1. Alloy composition
Alloy Cd-Zn Bi-Zn Bi-Sn-Zn Metal Cd Zn Bi Zn Bi Sn Zn x 0.4 0.6 0.3 0.7 0.1 0.4 0.5 m/g 32.04 27.96 34.68 25.32 12.40 28.19 19.41 表 2 纯Zn在实验条件下的蒸发速率值
Table 2. Evaporation rate of pure Zn under experimental conditions
Metal T/K t/min mZn0/g mZn/g ωZn ω*Zn Zn 630 15 60 57.18 0.027 0.023 表 3 Cd-Zn合金中Zn的蒸发速率及凝结系数
Table 3. Evaporation rate and condensation coefficient of Zn in Cd-Zn alloys
T/K t/min ω*Zn ωZn αZn=ω*Zn /ωZn 590 20 2.19×10-3 4.97×10-2 0.044 600 15 3.61×10-3 7.40×10-2 0.049 610 10 4.80×10-3 1.08×10-1 0.044 620 8 7.59×10-3 1.59×10-1 0.048 630 5 1.29×10-2 2.26×10-1 0.057 表 4 Bi-Zn合金中Zn的蒸发速率及凝结系数
Table 4. Evaporation rate and condensation coefficientof Zn in Bi-Zn alloys
T/K t/min ω*Zn ωZn αZn=ω*Zn /ωZn 760 5 1.67×10-4 1.69×10-2 0.00989 770 2 9.49×10-4 2.14×10-2 0.0443 780 2 3.49×10-3 2.70×10-2 0.129 790 2 5.05×10-3 3.37×10-2 0.150 800
810
820
8302
2
2
26.79×10-3
7.89×10-3
8.35×10-3
1.02×10-24.19×10-2
5.19×10-2
6.38×10-2
7.80×10-20.162
0.152
0.131
0.131表 5 Bi-Sn-Zn合金中Zn的蒸发速率及凝结系数
Table 5. Evaporation rate and condensation coefficient of Zn in Bi-Sn-Zn alloys
T/K t/min ω*Zn ωZn αZn=ω*Zn /ωZn 750 5 2.10×10-3 8.28×10-3 0.254 770 1 3.30×10-3 1.33×10-2 0.248 790 1 4.90×10-3 2.10×10-2 0.233 810 1 1.24×10-2 3.22×10-2 0.386 830 1 1.67×10-2 4.84×10-2 0.346 表 6 合金中Zn的蒸发速率常数值k
Table 6. Constant value k in different alloys
Cd-Zn Bi-Zn Bi-Sn-Zn T/K k T/K k T/K k 590 4.39×10-4 760 1.72×10-3 750 2.95×10-3 600 5.70×10-4 770 4.20×10-3 770 1.30×10-2 610 9.27×10-4 780 4.88×10-3 790 1.39×10-2 620 1.11×10-3 790 4.82×10-3 810 1.63×10-2 630 1.80×10-3 800 5.55×10-3 830 2.04×10-2 810 5.97×10-3 820 6.14×10-3 830 6.61×10-3 -
[1] 蒋琳, 李阿俊. 内蒙古某含银铅锌矿工艺矿物学研究[J]. 矿产综合利用, 2020(1):94-97. doi: 10.3969/j.issn.1000-6532.2020.01.019
JIANG L, LI A J. Study on process mineralogy for a silver-containing lead-zinc ore in Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2020(1):94-97. doi: 10.3969/j.issn.1000-6532.2020.01.019
[2] 陈攀, 熊馨, 应永鹏, 等. 工艺矿物学研究在青海某铅锌矿应用[J]. 矿产综合利用, 2020(1):98-102. doi: 10.3969/j.issn.1000-6532.2020.01.020
CHEN P, XIONG X, YING Y P, et al. Application of technological mineralogy for a lead-zinc ore in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2020(1):98-102. doi: 10.3969/j.issn.1000-6532.2020.01.020
[3] 缑明亮, 夏丹. 陕西某锌冶炼厂锌冶炼渣综合利用[J]. 矿产综合利用, 2020(4):147-151. doi: 10.3969/j.issn.1000-6532.2020.04.025
GOU M L, XIA D. Study on comprehensive utilization of zinc smelting slag in a zinc smelter in Shaanxi province[J]. Multipurpose Utilization of Mineral Resources, 2020(4):147-151. doi: 10.3969/j.issn.1000-6532.2020.04.025
[4] 徐璐, 何兰军, 杨耀辉, 等. 从云南某锌浸出渣中回收锌锗的试验研究[J]. 矿产综合利用, 2020(1):116-119. doi: 10.3969/j.issn.1000-6532.2020.01.024
XU L, HE L J, YANG Y H, et al. Experimental research on recovery of zinc and germanium from a zinc leaching residue in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2020(1):116-119. doi: 10.3969/j.issn.1000-6532.2020.01.024
[5] 戴永年, 杨斌. 有色金属真空冶金[M]. 北京: 冶金工业出版社, 2009: 2-3.
DAI Y N, YANG B. Vacuum metallurgy of nonferrous metals [M]. Beijing: Metallurgical Industry Press, 2009: 2-3.
[6] 高晶宝, 徐俊杰, 杨斌, 等. 铅基合金体系组元活度及气-液平衡的模型预测[J]. 中国有色金属学报, 2019, 29(4):837-850. doi: 10.19476/j.ysxb.1004.0609.2019.04.21
GAO J B, XU J J, YANG B, et al. Model prediction of component activity andvapor liquid equilibrium in lead-based alloy system[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4):837-850. doi: 10.19476/j.ysxb.1004.0609.2019.04.21
[7] 闫华龙, 熊恒, 杨斌, 等. 高镉锌真空蒸馏分离锌镉的研究[J]. 真空科学与技术学报, 2015, 35(3):330-333. doi: 10.13922/j.cnki.cjovst.2015.03.14
YAN H L, XIONG H, YANG B, et al. Separation of Zn and Cd from Cd-rich Zn-concentrate by vacuum distillation[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(3):330-333. doi: 10.13922/j.cnki.cjovst.2015.03.14
[8] O Winkler, R Bakish. Vacuum metallurgy[M]. Elsevier Publishing Company, Amsterdam, 1971: 63-69.
[9] 丘克强, 段文军, 陈启元. 金属在真空状态下的蒸发速率[J]. 有色金属, 2002(2):48-52.
QIU K Q, DUAN W J, CHEN Q Y. Rate of metal evaporation under vacuum condition[J]. Nonferrous Metals, 2002(2):48-52.
[10] TIidaR, ILGuthrie. The physical properties of liquid metals[M]. Clarendon, Oxford, (1988).
[11] S K Upadhyay. Chemical kinetics and reaction dynamics[M]. McGraw-Hill (2001)
[12] RB, HLandolt, Phase equilibria crystallographic and thermodynamic data of binary alloys[M]. Springer-Verlag, (1993).
[13] D V Malakhov, X J Liu, I Ohnuma, et al. Thermodynamic calculation of phase equilibria of the Bi-Sn-Zn system[J]. Journal of Phase Equilibria, 2000, 21(6):514-520. doi: 10.1007/s11669-000-0019-1
[14] 金松寿, 胡科诚. 金属稀溶液中杂质元素的蒸气压及蒸发系数的估计[J]. 稀有金属, 1981(1): 3-7.
JIN S S, HU K C. Estimation of vapor pressure and volatilization coefficient of impurity elements in dilute metal solution[J]. Chinese Journal of Rare Metals. 1981, (1): 3-7.