浮选过程中气-液界面特性研究进展

王市委, 石开仪, 李远, 陶秀祥. 浮选过程中气-液界面特性研究进展[J]. 矿产综合利用, 2023, 44(6): 77-82. doi: 10.3969/j.issn.1000-6532.2023.06.012
引用本文: 王市委, 石开仪, 李远, 陶秀祥. 浮选过程中气-液界面特性研究进展[J]. 矿产综合利用, 2023, 44(6): 77-82. doi: 10.3969/j.issn.1000-6532.2023.06.012
Wang Shiwei, Shi Kaiyi, Li Yuan, Tao Xiuxiang. Advance in Gas-Liquid Interface Characterization in Flotation Process[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 77-82. doi: 10.3969/j.issn.1000-6532.2023.06.012
Citation: Wang Shiwei, Shi Kaiyi, Li Yuan, Tao Xiuxiang. Advance in Gas-Liquid Interface Characterization in Flotation Process[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 77-82. doi: 10.3969/j.issn.1000-6532.2023.06.012

浮选过程中气-液界面特性研究进展

  • 基金项目: 国家自然科学基金(52264032);六盘水市高灰细粒煤泥深度提质利用重点实验室(52020-2019-05-04);贵州省煤炭洁净利用重点实验室(黔科合平台人才[2020]2001)
详细信息
    作者简介: 王市委(1984-),男,博士,教授,研究方向为低阶煤浮选基础理论
  • 中图分类号: TD923

Advance in Gas-Liquid Interface Characterization in Flotation Process

  • 这是一篇矿业工程领域的论文。近年来,表面活性剂(起泡剂)在矿物浮选中的作用研究尤为重要,因其揭示了气泡-颗粒碰撞或粘附前的气-液界面特性信息,对浮选效果的优化具有重要理论指导意义。本文重点概述了气-液界面电位测试技术、气-液界面张力表征技术及气-液界面吸附特性测试技术,介绍了气-液界面吸附特性的图像轮廓-张力法(PAT)测试方法,阐述了不同气-液界面特性下Stefan-Reynolds模型、Taylor模型及Stokes-Reynolds-Young-Laplace及Stokes-Reynolds模型计算参数,并展望了气-液界面特性的研究工作。

  • 加载中
  • [1]

    王市委, 陶秀祥, 陈松降, 等. 低阶煤的油泡浮选研究进展[J]. 矿产综合利用, 2020(4):48-58. WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008

    WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008

    [2]

    朱一民. 2020年浮选药剂的进展[J]. 矿产综合利用, 2021(2):102-118. ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2):102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    ZHU Y M. Development of flotation reagent in 2020[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 102-118. doi: 10.3969/j.issn.1000-6532.2021.02.019

    [3]

    朱一民. 2019年浮选药剂的进展[J]. 矿产综合利用, 2020(5):1-17. ZHU Y M. Development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5):1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001

    ZHU Y M. Development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001

    [4]

    朱一民, 周菁. 2018年浮选药剂的进展[J]. 矿产综合利用, 2019(4):1-10. ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4):1-10. doi: 10.3969/j.issn.1000-6532.2019.04.001

    ZHU Y M, ZHOU J. The development of flotation reagent in 2018[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 1-10. doi: 10.3969/j.issn.1000-6532.2019.04.001

    [5]

    KRASOWSKA M, ZAWALA J, BRADSHAW-HAJEK B H, et al. Interfacial characterisation for flotation: 1. Solid-liquid interface[J]. Current Opinion in Colloid & Interface Science, 2018, 37:61-73.

    [6]

    LASKOWSKI J S. Frothers and Flotation Froth[J]. Mineral Processing and Extractive Metallurgy Review, 1993, 12(1):61-89. doi: 10.1080/08827509308935253

    [7]

    FINCH J A, NESSET J E, ACUÑA C. Role of frother on bubble production and behaviour in flotation[J]. Minerals Engineering, 2008, 21(12):949-957.

    [8]

    胡盘金, 郑永兴, 宁继来, 等. 含砷硫化铜矿浮选除砷研究进展[J]. 矿产综合利用, 2020(5):45-51. HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5):45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    HU P J, ZHENG Y X, NING J L, et al. Research progress of arsenic removal from arsenic bearing copper sulphide ore by flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(5): 45-51. doi: 10.3969/j.issn.1000-6532.2020.05.005

    [9]

    XING Y, XU M, GUI X, et al. The role of surface forces in mineral flotation[J]. Current Opinion in Colloid & Interface Science, 2019, 44:143-152.

    [10]

    CORONA-ARROYO M A, LÓPEZ-VALDIVIESO A, LASKOWSKI J S, et al. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column[J]. Minerals Engineering, 2015, 81:109-115. doi: 10.1016/j.mineng.2015.07.023

    [11]

    邱鸿鑫, 陈浙锐, 王光辉. 水分子在伊利石表面的吸附作用机理分析[J]. 矿产综合利用, 2020(3):197-202. QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(3):197-202. doi: 10.3969/j.issn.1000-6532.2020.03.034

    QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 197-202. doi: 10.3969/j.issn.1000-6532.2020.03.034

    [12]

    GRACIAA A, MOREL G, SAULNER P, et al. The ζ-potential of gas bubbles[J]. Journal of Colloid and Interface Science, 1995, 172(1):131-136. doi: 10.1006/jcis.1995.1234

    [13]

    YANG C, DABROS T, LI D, et al. Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method[J]. Journal of Colloid and Interface Science, 2001, 243(1):128-135. doi: 10.1006/jcis.2001.7842

    [14]

    LIU J, MAK T, ZHOU Z, et al. Fundamental study of reactive oily-bubble flotation[J]. Minerals Engineering, 2002, 15(9):667-676. doi: 10.1016/S0892-6875(02)00158-9

    [15]

    SAULNIER P, BOURIAT P, MOREL G, et al. Zeta potential of air bubbles in solutions of binary mixtures of surfactants (monodistributed nonionic/anionic surfactant mixtures)[J]. Journal of Colloid and Interface Science, 1998, 200(1):81-85. doi: 10.1006/jcis.1997.5361

    [16]

    ELMAHDY A M, MIRNEZAMI M, FINCH J A. Zeta potential of air bubbles in presence of frothers[J]. International Journal of Mineral Processing, 2008, 89(1):40-43.

    [17]

    BUENO-TOKUNAGA A, PÉREZ-GARIBAY R, MARTÍNEZ-CARRILLO D. Zeta potential of air bubbles conditioned with typical froth flotation reagents[J]. International Journal of Mineral Processing, 2015, 140:50-57. doi: 10.1016/j.minpro.2015.04.028

    [18]

    CHO S, KIM J, CHUN J, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1):28-34.

    [19]

    USHIKUBO F Y, ENARI M, FURUKAWA T, et al. Zeta-potential of micro-and/or nano-bubbles in water produced by some kinds of gases[J]. IFAC Proceedings Volumes, 2010, 43(26):283-288. doi: 10.3182/20101206-3-JP-3009.00050

    [20]

    WU C, WANG L, HARBOTTLE D, et al. Studying bubble–particle interactions by zeta potential distribution analysis[J]. Journal of Colloid and Interface Science, 2015, 449:399-408. doi: 10.1016/j.jcis.2015.01.040

    [21]

    KUSUMA A M, LIU Q, ZENG H. Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements[J]. Minerals Engineering, 2014, 69:15-23. doi: 10.1016/j.mineng.2014.07.005

    [22]

    DUAN J, WANG J, GUO T, et al. Zeta potentials and sizes of aluminum salt precipitates–effect of anions and organics and implications for coagulation mechanisms[J]. Journal of Water Process Engineering, 2014, 4:224-232. doi: 10.1016/j.jwpe.2014.10.008

    [23]

    NGUYEN C V, NGUYEN T V, PHAN C M. Dynamic adsorption of a gemini surfactant at the air/water interface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 482:365-370.

    [24]

    ZHILONG W, HONGYU G, TONGMING L. Measuring dynamic surface tension of surfactant solutions by using growing bubble method[Z]. 2010: 50, 463-468.

    [25]

    PAN L, JUNG S, YOON R. Effect of hydrophobicity on the stability of the wetting films of water formed on gold surfaces[J]. Journal of Colloid and Interface Science, 2011, 361(1):321-330. doi: 10.1016/j.jcis.2011.05.057

    [26]

    NGUYEN A V, PHAN C M, EVANS G M. Effect of the bubble size on the dynamic adsorption of frothers and collectors in flotation[J]. International Journal of Mineral Processing, 2006, 79(1):18-26. doi: 10.1016/j.minpro.2005.11.007

    [27]

    BASAŘOVÁ P, SUCHANOVÁ H, SOUŠKOVÁ K, et al. Bubble adhesion on hydrophobic surfaces in solutions of pure and technical grade ionic surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522:485-493. doi: 10.1016/j.colsurfa.2017.03.024

    [28]

    BASAŘOVÁ P, VÁCHOVÁ T, MOORE G, et al. Bubble adhesion onto the hydrophobic surface in solutions of non-ionic surface-active agents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505:64-71.

    [29]

    LIU W, PAWLIK M, HOLUSZKO M. The role of colloidal precipitates in the interfacial behavior of alkyl amines at gas–liquid and gas–liquid–solid interfaces[J]. Minerals Engineering, 2015, 72:47-56. doi: 10.1016/j.mineng.2014.12.001

    [30]

    LE T N, PHAN C M, NGUYEN A V, et al. An unusual synergistic adsorption of MIBC and CTAB mixtures at the air–water interface[J]. Minerals Engineering, 2012, 39:255-261. doi: 10.1016/j.mineng.2012.06.003

    [31]

    SALAMAH A, PHAN C M, PHAM H G. Dynamic adsorption of cetyl trimethyl ammonium bromide at decane/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484:313-317. doi: 10.1016/j.colsurfa.2015.08.010

    [32]

    GEORGE J E, CHIDANGIL S, GEORGE S D. A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants[J]. Applied Surface Science, 2017, 410:117-125. doi: 10.1016/j.apsusc.2017.03.071

    [33]

    NGUYEN T B, PHAN C M. Surface flow of surfactant layer on air/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530:72-75.

    [34]

    DUNÉR G, GAROFF S, PRZYBYCIEN T M, et al. Transient marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow[J]. Journal of Colloid and Interface Science, 2016, 462:75-87. doi: 10.1016/j.jcis.2015.09.042

    [35]

    SHARMA A, RUCKENSTEIN E. Effects of surfactants on wave-induced drainage of foam and emulsion films[J]. Colloid & Polymer Science, 1988, 266(1):60-69.

    [36]

    KRASOWSKA M, ZAWALA J, MALYSA K. Air at hydrophobic surfaces and kinetics of three phase contact formation[J]. Advances in Colloid and Interface Science, 2009, 147:155-169.

    [37]

    WARSZYŃSKI P, JACHIMSKA B, MAŁYSA K. Experimental evidence of the existence of non-equilibrium coverages over the surface of the floating bubble[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1996, 108(2-3):321-325.

    [38]

    JACHIMSKA B, WARSZYÑSKI P, MAŁYSA K. Effect of motion on lifetime of bubbles at n-butanol solution surface[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1998, 143(2-3):429-440. doi: 10.1016/S0927-7757(98)00382-3

    [39]

    KRZAN M, MALYSA K. Influence of electrolyte presence on bubble motion in solutions of sodium n-alkylsulfates (C8, C10, C12)[J]. Physicochemical Problems of Mineral Processing, 2012, 48(1):49-62.

    [40]

    KOWALCZUK P B, ZAWALA J, KOSIOR D, et al. Three-phase contact formation and flotation of highly hydrophobic polytetrafluoroethylene in the presence of increased dose of frothers[J]. Industrial & Engineering Chemistry Research, 2016, 55(3):839-843.

    [41]

    ZAWALA J, DORBOLO S, VANDEWALLE N, et al. Bubble bouncing at a clean water surface[J]. Physical Chemistry Chemical Physics, 2013, 15(40):17324-17332. doi: 10.1039/c3cp52746h

    [42]

    KOSIOR D, ZAWALA J, KRASOWSKA M, et al. Influence of n-octanol and α-terpineol on thin film stability and bubble attachment to hydrophobic surface.[J]. Physical Chemistry Chemical Physics Pccp, 2013, 15(7):2586-2595. doi: 10.1039/c2cp43545d

    [43]

    KOWALCZUK P B, ZAWALA J, DRZYMALA J, et al. Influence of hexylamine on kinetics of flotation and bubble attachment to the quartz surface[J]. Separation Science and Technology, 2016, 51(15-16):2681-2690. doi: 10.1080/01496395.2016.1172640

    [44]

    DEY S, PANI S, SINGH R. Study of interactions of frother blends and its effect on coal flotation[J]. Powder Technology, 2014, 260:78-83. doi: 10.1016/j.powtec.2014.03.068

    [45]

    ZHOLOB S A, MAKIEVSKI A V, MILLER R, et al. Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry[J]. Advances in Colloid and Interface Science, 2007, 134-135:322-329. doi: 10.1016/j.cis.2007.04.011

    [46]

    BERRY J D, NEESON M J, DAGASTINE R R, et al. Measurement of surface and interfacial tension using pendant drop tensiometry[J]. Journal of Colloid and Interface Science, 2015, 454:226-237. doi: 10.1016/j.jcis.2015.05.012

    [47]

    HARVEY P A, NGUYEN A V, JAMESON G J, et al. Influence of sodium dodecyl sulphate and Dowfroth frothers on froth stability[J]. Minerals Engineering, 2005, 18(3):311-315. doi: 10.1016/j.mineng.2004.06.011

    [48]

    SCHREITHOFER N, WIESE J, MCFADZEAN B, et al. Frother-depressant interactions in two and three phase systems[J]. International Journal of Mineral Processing, 2011, 100(1):33-40.

    [49]

    PHAN C M, NGUYEN A V, EVANS G M. Dynamic adsorption of sodium dodecylbenzene sulphonate and dowfroth 250 onto the air–water interface[J]. Minerals Engineering, 2005, 18(6):599-603. doi: 10.1016/j.mineng.2004.10.004

  • 加载中
计量
  • 文章访问数:  484
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2021-04-02
刊出日期:  2023-12-25

目录