碱激发地聚物的反应机理、性能与应用的研究进展

荀小伟, 肖亚雄, 张佰发, 李国会, 姚思雯. 碱激发地聚物的反应机理、性能与应用的研究进展[J]. 矿产综合利用, 2023, 44(6): 83-90. doi: 10.3969/j.issn.1000-6532.2023.06.013
引用本文: 荀小伟, 肖亚雄, 张佰发, 李国会, 姚思雯. 碱激发地聚物的反应机理、性能与应用的研究进展[J]. 矿产综合利用, 2023, 44(6): 83-90. doi: 10.3969/j.issn.1000-6532.2023.06.013
Xun Xiaowei, Xiao Yaxiong, Zhang Baifa, Li Guohui, Yao Siwen. Recent Progress on Reaction Mechanism, Properties, and Application of Alkali-Activated Geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 83-90. doi: 10.3969/j.issn.1000-6532.2023.06.013
Citation: Xun Xiaowei, Xiao Yaxiong, Zhang Baifa, Li Guohui, Yao Siwen. Recent Progress on Reaction Mechanism, Properties, and Application of Alkali-Activated Geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(6): 83-90. doi: 10.3969/j.issn.1000-6532.2023.06.013

碱激发地聚物的反应机理、性能与应用的研究进展

详细信息
    作者简介: 荀小伟(1995-),男,高级工程师,主要从事建筑材料研究、工程管理
    通讯作者: 张佰发(1978-),男,教授,主要从事建筑材料研究工作
  • 中图分类号: TD989

Recent Progress on Reaction Mechanism, Properties, and Application of Alkali-Activated Geopolymer

More Information
  • 这是一篇陶瓷及复合材料领域的论文。碱激发地质聚合物(简称“地聚物”)是一种新型的无机胶凝材料,由硅-氧四面体和铝-氧四面体通过共用氧原子相互交联而形成,铝-氧四面体所带的负电荷通过碱金属阳离子平衡。由于具有高度聚合的氧化物网络结构,且结构稳定性高,地聚物具有优异的性能:高强度、耐久性、耐高温性等,使其在高性能建材的制备、废水的处理、固废资源化等领域得到广泛的应用与研究。为综合了解碱激发地聚物的研究现状,本文总结了国内外关于碱激发地聚物反应机理的研究现状,综述了地聚物微观结构与力学性能的最新进展,并介绍了其在建材、环境污染治理和固废资源化利用等领域的研究进展。

  • 加载中
  • 图 1  地聚物结构单元[20]

    Figure 1. 

  • [1]

    李涛, 罗仙平, 钱有军. 加水一体化合成钨尾矿基地聚合物[J]. 矿产综合利用, 2019(1):83-87. LI T, LUO X P, QIAN Y J. Investigation on synthesis of tungsten tailings base geopolymer by water integration[J]. Multipurpose Utilization of Mineral Resources, 2019(1):83-87. doi: 10.3969/j.issn.1000-6532.2019.01.018

    LI T, LUO X P, QIAN Y J. Investigation on synthesis of tungsten tailings base geopolymer by water integration[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 83-87. doi: 10.3969/j.issn.1000-6532.2019.01.018

    [2]

    汪应玲, 罗绍华, 姜茂发, 等. 铁尾矿制备地质聚合物工艺条件研究[J]. 矿产综合利用, 2019(5):121-126. WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5): 121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    [3]

    M Chougan, S Hamidreza Ghaffar, M Jahanzat, et al. The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites[J]. Constrcution and Building Materials, 2020, 250:118928. doi: 10.1016/j.conbuildmat.2020.118928

    [4]

    C Kuenzel, J F Cisneros, T P Neville, et al. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin[J]. Journal of Nuclear Materials, 2015, 466:94-99. doi: 10.1016/j.jnucmat.2015.07.034

    [5]

    T Lan, P Li, F U Rehman, et al. Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers[J]. Environ Sci Pollut Res, 2019, 26:33555-33567. doi: 10.1007/s11356-019-06362-w

    [6]

    R Bendoni, F Miccio, V Medri, et al. Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas[J]. Renewable Energy, 2019, 131:1107-1116. doi: 10.1016/j.renene.2018.08.067

    [7]

    邵宁宁. 碱激发粉煤灰过程机理及其发泡胶凝材料的高性能化[D] . 北京: 中国矿业大学(北京), 2017.

    SHAO N N. Mechanism of alkali-excited fly ash process and its high performance of foamed cementitious materials [D]. Beijing: China University of Mining and Technology (Beijing), 2017.

    [8]

    M Sandanayake, C Gunasekara, D Law, et al. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction[J]. J Clean Prod, 2018, 204:399-408. doi: 10.1016/j.jclepro.2018.08.311

    [9]

    P Kinnunen, A Ismailov, S Solismaa, et al. Recycling mine tailings in chemically bonded ceramics - A review[J]. J Clean Prod, 2018, 174:634-649. doi: 10.1016/j.jclepro.2017.10.280

    [10]

    B Zhang, P Yuan, H Guo, et al. Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite[J]. Constrcution and Building Materials, 2202, 1,68:121186.

    [11]

    J Davidovits. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35:429-441. doi: 10.1007/BF01904446

    [12]

    D Khale, R Chaudhary. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42:729-746. doi: 10.1007/s10853-006-0401-4

    [13]

    X Yao, Z Zhang, H Zhu, et al. Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493:49-54. doi: 10.1016/j.tca.2009.04.002

    [14]

    吴静. 新型地聚合物基建筑材料的研究[D]. 武汉: 武汉理工大学, 2007.

    WU J. Research on new geopolymer-based building materials [D]. Wuhan: Wuhan University of Technology, 2007.

    [15]

    M Bing-hui, Z He, C Xue-min, et al. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers[J]. Applied Clay Science, 2014, 99:144-148. doi: 10.1016/j.clay.2014.06.024

    [16]

    张云升, 孙伟, 林玮, 等. 用环境扫描电镜原位定量研究K-PS型地聚合物水泥的水化过程[J]. 东南大学学报(自然科学版), 2003, 33(3):351-354. ZHANG Y S, SUN W, LIN W, et al. In situ quantitative study of the hydration process of K-PS geopolymer cement by environmental scanning electron microscopy[J]. Journal of Southeast University (Natural Science Edition), 2003, 33(3):351-354. doi: 10.3321/j.issn:1001-0505.2003.03.026

    ZHANG Y S, SUN W, LIN W, et al. In situ quantitative study of the hydration process of K-PS geopolymer cement by environmental scanning electron microscopy[J]. Journal of Southeast University (Natural Science Edition), 2003, 33(3): 351-354. doi: 10.3321/j.issn:1001-0505.2003.03.026

    [17]

    A Fernández-Jiménez, A Palomo, M Criado. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement & Concrete Research, 35(2005) 1204-1209.

    [18]

    闫姝. 氧化石墨烯增强铝硅酸盐聚合物的聚合与陶瓷化机制[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    YAN S. Polymerisation and ceramisation mechanism of graphene oxide reinforced aluminosilicate polymers [D]. Harbin: Harbin Institute of Technology, 2016.

    [19]

    贾德昌, 何培刚, 苑景坤, 等. 铝硅酸盐聚合物及其复合材料研究进展[J]. 硅酸盐学报, 2017, 45(12):17-37. JIA D C, HE P G, YUAN J K, et al. Research progress on aluminosilicate polymers and their composites[J]. Journal of Silicates, 2017, 45(12):17-37. doi: 10.14062/j.issn.0454-5648.2017.12.02

    JIA D C, HE P G, YUAN J K, et al. Research progress on aluminosilicate polymers and their composites[J]. Journal of Silicates, 2017, 45(12): 17-37. doi: 10.14062/j.issn.0454-5648.2017.12.02

    [20]

    刘意. 开孔地质聚合物与多级孔分子筛的制备及吸附Pb2+、Cu2+的研究[D]. 武汉: 中国地质大学, 2018.

    LIU Y. Preparation of open-pore geopolymer with multistage porous molecular sieves and adsorption of Pb2+ and Cu2+ [D]. Wuhan: China University of Geosciences, 2018.

    [21]

    V Barbosa, K Mackenzie, C Thaumaturgo. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica[J]. Sodium Polysialate Polymers, 2(2000) 0-317.

    [22]

    P Duxson, S W Mallicoat, G C Lukey, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2007) 8-20.

    [23]

    S Das, P Yang, S. S Singh, et al. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models[J]. Cement and Concrete Research, 78(2015) 252-262.

    [24]

    Jaroslav, Melar, Guillaume, et al. The porous network and its interface inside geopolymers as a function of alkali cation and aging[J]. The Journal of Physical Chemistry C, 119(2015) 17619-17632.

    [25]

    Lolli, Francesca, Manzano, et al. Atomistic simulations of geopolymer models: the impact of disorder on structure and mechanics[J]. ACS Appl Mater Interfaces, (2018).

    [26]

    R Wang, J Wang, T Dong, et al. Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: Molecular dynamics simulation and microstructural experimental study[J]. Constrcution and Building Materials, 240(2020) 117935.

    [27]

    Z Ji, Y Pei. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review[J]. Journal of Environmental Management, 231(2019) 256-267.

    [28]

    简家成, 刘峥, 杨宏斌, 等, 地聚物胶凝材料制备及应用研究现状[J]. 矿产综合利用, 2014: 18-22.

    JIAN J C, LIU Z, YANG H B, et al. Research on preparation and application status of geopolymers[J]. Multipurpose Utilization of Mineral Resources, 2014: 18-22.

    [29]

    P Krivenko, R Drochytka, A Gelevera, et al. Mechanism of preventing the alkali–aggregate reaction in alkali activated cement concretes[J]. Cement and Concrete Composites, 45(2014) 157-165.

    [30]

    K Chen, D Wu, L Xia, et al. Geopolymer concrete durability subjected to aggressive environments – a review of influence factors and comparison with ordinary Portland cement[J]. Constrcution and Building Materials, 279(2021) 122496.

    [31]

    陶文宏, 付兴华, 孙凤金, 等. 地聚物胶凝材料性能与聚合机理的研究[J]. 硅酸盐通报, 2008: 730-735+739.

    TAO W H, FU X H, SUN F J, et al. Studies on properties and mechanisms of geopolymer cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2008: 730-735+739.

    [32]

    G. F Huseien, J Mirza, M Ismail, et al. Geopolymer mortars as sustainable repair material: A comprehensive review[J]. Renewable & Sustainable Energy Reviews, 80(2017) 54-74.

    [33]

    张晓飞. 地质聚合物聚合机理的第一性原理研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    ZHANG X F. First-principles study on the polymerisation mechanism of geopolymers[D]. Harbin: Harbin Institute of Technology, 2010.

    [34]

    C Shi, B Qu, J L Provis. Recent progress in low-carbon binders[J]. Cement & Concrete Research, 122(2019) 227-250.

    [35]

    B Zhang, H Guo, P Yuan, et al. Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination[J]. Applied Clay Science, 2020, 185:105375. doi: 10.1016/j.clay.2019.105375

    [36]

    B Walkley, R San Nicolas, M A Sani, et al. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors[J]. Cement and Concrete Research, 2016, 89:120-135. doi: 10.1016/j.cemconres.2016.08.010

    [37]

    J Davidovits, 30 years of successes and failures in geopolymer applications[J]. Market Trends and Potential Breakthroughs, 2002.

    [38]

    Z Zhang, J L Provis, A Reid, et al. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete[J]. Cement & Concrete Composites, 2015, 62:97-105.

    [39]

    P Duan, C Yan, W Luo, et al. A novel surface waterproof geopolymer derived from metakaolin by hydrophobic modification[J]. Materials Letters, 164(2016): 172-175.

    [40]

    A R G Azevedo, C M F Vieira, W M Ferreira, et al. Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles[J]. Journal of Building Engineering, 29(2020) 101156.

    [41]

    Z Zhang, X Yao, H Wang. Potential application of geopolymers as protection coatings for marine concrete III Field experiment[J]. Applied Clay Science, 67-68(2012) 57-60.

    [42]

    王开拓. 碱基地质聚合物在低温及真空条件下的反应机理与应用探索[D]. 南宁: 广西大学, 2016.

    WANG K T. Exploration of reaction mechanism and application of alkali geopolymers under low temperature and vacuum conditions [D]. Nanning: Guangxi University, 2016.

    [43]

    M. Z Naser, Extraterrestrial construction materials[J]. Progress in Materials Science, 2019, 105:100577. doi: 10.1016/j.pmatsci.2019.100577

    [44]

    E Hermann, C Kunze, R Gatzweiler, et al. Solidification of various radioactive residues by géopolymère®with special emphasis on long-term-stability[J]. Geopolymere ’99 Proceedings, [2023-09-15]

    [45]

    X Guo, L Zhang, J Huang, et al. Detoxification and solidification of heavy metal of chromium using fly ash-based geopolymer with chemical agents[J]. Constrcution and Building Materials, 2017, 151:394-404. doi: 10.1016/j.conbuildmat.2017.05.199

    [46]

    M. R El-Naggar, E. H El-Masry, A. A El-Sadek. Assessment of individual and mixed alkali activated binders for solidification of a nuclear grade organic resin loaded with 134Cs, 60Co and 152+154Eu radionuclides[J]. Journal of Hazardous Materials, 2019, 375:149-160. doi: 10.1016/j.jhazmat.2019.04.063

    [47]

    Immobilization behavior of Sr in geopolymer and itsceramic product[J]. Journal of the American Ceramic Society, 2019.

    [48]

    A Al-Mashqbeh, S Abuali, B El-Eswed, et al. Immobilization of toxic inorganic anions(Cr2O72-, MnO4- and Fe(CN)63-) in metakaolin based geopolymers: A preliminary study[J]. Ceramics International, 2018, 44:5613-5620. doi: 10.1016/j.ceramint.2017.12.208

    [49]

    T Luukkonen, A Heponiemi, H Runtti, et al. Application of alkali-activated materials for water and wastewater treatment: a review[J]. Reviews in Environmental Science and Bio-Technology, 2019, 18:271-297. doi: 10.1007/s11157-019-09494-0

    [50]

    S Andrejkovičová, A Sudagar, J Rocha, et al. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers[J]. Applied Clay Science, 2016, 126:141-152. doi: 10.1016/j.clay.2016.03.009

    [51]

    İ Kara, D Yilmazer, S T Akar, Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions[J]. Applied Clay Science, 2017, 139: 54-63.

    [52]

    T Hertel, R M Novais, R M Alarcon, et al. Use of modified bauxite residue-based porous inorganic polymer monoliths as adsorbents of methylene blue[J]. J Clean Prod, 2019, 227:877-889. doi: 10.1016/j.jclepro.2019.04.084

    [53]

    S Zhao, F Muhammad, L Yu, et al. Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue–based alkali-activated cementitious materials[J]. Environmental Science & Pollution Research, 2019.

    [54]

    M C M Nasvi, P G Ranjith, J Sanjayan. The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells[J]. Applied Energy, 2013, 102: 1391-1398.

    [55]

    B Panda, S. C Paul, N. A. N Mohamed, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113:108-116. doi: 10.1016/j.measurement.2017.08.051

    [56]

    B Cai, H Engqvist, S Bredenberg. Evaluation of the resistance of a geopolymer-based drug delivery system to tampering[J]. International Journal of Pharmaceutics, 2014, 465:169-174. doi: 10.1016/j.ijpharm.2014.02.029

    [57]

    G Ascensão, M. P Seabra, J. B Aguiar, et al. Red mud-based geopolymers with tailored alkali diffusion properties and pH buffering ability[J]. J Clean Prod, 2017, 148:23-30. doi: 10.1016/j.jclepro.2017.01.150

    [58]

    Y. J Zhang, P. Y He, Y. X Zhang, et al. A novel electroconductive graphene/fly ash-based geopolymer composite and its photocatalytic performance[J]. Chemical Engineering Journal, 2018, 334:2459-2466. doi: 10.1016/j.cej.2017.11.171

    [59]

    J Davidovits, L Huaman, R Davidovits. Ancient geopolymer in south-American monument SEM and petrographic evidence[J]. Materials Letters, 2019, 235: 120-124.

  • 加载中

(1)

计量
  • 文章访问数:  1389
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2021-04-16
刊出日期:  2023-12-25

目录