凹凸棒石/纳米铁复合材料的制备工艺及对亚甲基蓝废水的处理

贺广喜, 朱霞萍, 王虹, 赵平, 任维. 凹凸棒石/纳米铁复合材料的制备工艺及对亚甲基蓝废水的处理[J]. 矿产综合利用, 2024, 45(2): 8-15, 22. doi: 10.3969/j.issn.1000-6532.2024.02.002
引用本文: 贺广喜, 朱霞萍, 王虹, 赵平, 任维. 凹凸棒石/纳米铁复合材料的制备工艺及对亚甲基蓝废水的处理[J]. 矿产综合利用, 2024, 45(2): 8-15, 22. doi: 10.3969/j.issn.1000-6532.2024.02.002
HE Guangxi, ZHU Xiaping, WANG Hong, ZHAO Ping, REN Wei. Preparation Process of Attapulgite/Nano Iron Composite and its Removal Application to Methylene Blue[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 8-15, 22. doi: 10.3969/j.issn.1000-6532.2024.02.002
Citation: HE Guangxi, ZHU Xiaping, WANG Hong, ZHAO Ping, REN Wei. Preparation Process of Attapulgite/Nano Iron Composite and its Removal Application to Methylene Blue[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 8-15, 22. doi: 10.3969/j.issn.1000-6532.2024.02.002

凹凸棒石/纳米铁复合材料的制备工艺及对亚甲基蓝废水的处理

  • 基金项目: 贵州省科技厅([2019]1424)资助
详细信息
    作者简介: 贺广喜(1997-),男,在读研究生,研究方向为粘土矿物的开发与利用
    通讯作者: 朱霞萍(1968-),女,博士,教授,硕士生导师,主要从事土壤、水体环境污染防控及修复技术的研究。
  • 中图分类号: TD989

Preparation Process of Attapulgite/Nano Iron Composite and its Removal Application to Methylene Blue

More Information
  • 这是一篇陶瓷及复合材料领域的论文。亚甲基蓝(MB)是工业染料废水中的典型污染物,不经处理任意排放会给水体带来非常大的危害。本文通过对凹凸棒石灼烧、有机超声改性和原位负载纳米铁制备了凹凸棒石/纳米铁复合材料(DDBAC/ATP/nZVI)。得到了复合材料的制备工艺:凹凸棒石原土经300 ℃焙烧1.5 h后加入20 mmol/100 g十二烷基二甲基苄基氯化铵(DDBAC),超声20 min,然后用液相还原法负载纳米铁,铁土比为1∶3、KBH4浓度为0.25 mol/L、反应时间为3 h。XRD、IR、SEM、BET、XPS等表征证实了DDBAC和纳米铁成功负载到凹凸棒石表面。复合材料对亚甲基蓝的较大吸附去除量为114.94 mg/g,60 d内应用性能稳定。

  • 加载中
  • 图 1  焙烧温度(a)和焙烧时间(b)对复合材料去除亚甲基蓝的影响

    Figure 1. 

    图 2  有机改性剂种类及用量对复合材料去除亚甲基蓝的影响

    Figure 2. 

    图 3  超声时间(a)、铁土比(b)、KBH4浓度(c)、反应时间(d)对复合材料去除亚甲基蓝的影响

    Figure 3. 

    图 4  凹凸棒石(a)和DDBAC/ATP/nZVI复合材料(b)的XRD

    Figure 4. 

    图 5  凹凸棒石(a)和DDBAC/ATP/nZVI复合材料(b)的IR

    Figure 5. 

    图 6  凹凸棒石(a:1 μm b: 2 μm c: 5 μm)和DDBAC/ATP/nZVI复合材料(d:1 μm e: 2 μm f: 5 μm)的SEM

    Figure 6. 

    图 7  (a):反应前后DDBAC/ATP/nZVI的XPS全扫描谱a前,b后; (b):吸附亚甲基蓝前后的DDBAC/ATP/nZVI的Fe2p谱

    Figure 7. 

    图 8  ATP和DDBAC/ATP/nZVI复合材料对亚甲基蓝的去除效果

    Figure 8. 

    图 9  DDBAC/ATP/nZVI复合材料稳定性能

    Figure 9. 

    表 1  凹凸棒石及DDBAC/ATP/nZVI复合材料的BET参数

    Table 1.  BET parameters of attapulgite and DDBAC/ATP/nZVI composites

    样品比表面积
    /(m2/g)
    孔容
    /(cc/g)
    孔(Dv(d))
    /nm
    ATP52.0800.0792.091
    DDBAC/ATP/nZVI84.4080.1583.841
    下载: 导出CSV
  • [1]

    Rai H S, Bhattacharyya M S, Singh J, et al. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment[J]. Critical Reviews in Environmental Science and Technology, 2005, 35(3):219-238. doi: 10.1080/10643380590917932

    [2]

    Ngulube T, Gumbo J R, Masindi V, et al. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review[J]. Journal of Environmental Management, 2017, 191:35-57.

    [3]

    Wang J, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701:135023. doi: 10.1016/j.scitotenv.2019.135023

    [4]

    Deng C, Hu H, Yu H, et al. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity[J]. Journal of Materials Science, 2021, 56(4):2994-3010. doi: 10.1007/s10853-020-05427-3

    [5]

    Wang J, Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401:126158. doi: 10.1016/j.cej.2020.126158

    [6]

    Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):4676-4697. doi: 10.1016/j.jece.2018.06.060

    [7]

    Ghasemzadeh G, Momenpour M, Omidi F, et al. Applications of nanomaterials in water treatment and environmental remediation[J]. Frontiers of Environmental Science & Engineering, 2014, 8(4):471-482.

    [8]

    Adeleye A S, Conway J R, Garner K, et al. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability[J]. Chemical Engineering Journal, 2016, 286:640-662. doi: 10.1016/j.cej.2015.10.105

    [9]

    Tara N, Siddiqui S I, Rathi G, et al. Nano-engineered adsorbent for the removal of dyes from water: A review[J]. Current Analytical Chemistry, 2020, 16(1):14-40. doi: 10.2174/1573411015666190117124344

    [10]

    Yan W, Lien H L, Koel B E, et al. Iron nanoparticles for environmental clean-up: recent developments and future outlook[J]. Environmental Science:Processes & Impacts, 2013, 15(1):63-77.

    [11]

    Mu B, Wang A. Adsorption of dyes onto palygorskite and its composites: a review[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):1274-1294. doi: 10.1016/j.jece.2016.01.036

    [12]

    Chen H, Zhao J, Zhong A, et al. Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue[J]. Chemical Engineering Journal, 2011, 174(1):143-150. doi: 10.1016/j.cej.2011.08.062

    [13]

    Yan L, Qin L, Yu H, et al. Adsorption of acid dyes from aqueous solution by CTMAB modified bentonite: kinetic and isotherm modeling[J]. Journal of Molecular Liquids, 2015, 211:1074-1081. doi: 10.1016/j.molliq.2015.08.032

    [14]

    Moulin P, Roques H. Zeta potential measurement of calcium carbonate[J]. Journal of Colloid and Interface Science, 2003, 261(1):115-126. doi: 10.1016/S0021-9797(03)00057-2

    [15]

    Frost R L, Xi Y, He H. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption[J]. Journal of Colloid and Interface Science, 2010, 341(1):153-161. doi: 10.1016/j.jcis.2009.09.027

    [16]

    Xu J, Zhang J, Wang Q, et al. Disaggregation of palygorskite crystal bundles via high-pressure homogenization[J]. Applied Clay Science, 2011, 54(1):118-123. doi: 10.1016/j.clay.2011.07.020

    [17]

    Cao Z, Jia Y, Wang Q, et al. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation[J]. Applied Clay Science, 2021, 212:106213. doi: 10.1016/j.clay.2021.106213

    [18]

    Jia Y, Ma H, Zhang W, et al. Z-scheme SnFe2O4-graphitic carbon nitride: Reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2020, 383:123172. doi: 10.1016/j.cej.2019.123172

    [19]

    彭书传, 王诗生, 陈天虎, 等. 坡缕石对水中亚甲基蓝的吸附动力学[J]. 硅酸盐学报, 2006(6):733-738.PENG S C, WANG S S, CHEN T H, et al. Adsorption kinetics of methylene blue onto purified palygorskite from aqueous solutions[J]. Journal of the Chinese Ceramic Society, 2006(6):733-738.

    PENG S C, WANG S S, CHEN T H, et al. Adsorption kinetics of methylene blue onto purified palygorskite from aqueous solutions[J]. Journal of the Chinese Ceramic Society, 2006(6):733-738.

    [20]

    Tan K B, Vakili M, Horri B A, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150:229-242. doi: 10.1016/j.seppur.2015.07.009

  • 加载中

(9)

(1)

计量
  • 文章访问数:  637
  • PDF下载数:  155
  • 施引文献:  0
出版历程
收稿日期:  2022-09-02
刊出日期:  2024-04-25

目录