Preparation Process of Attapulgite/Nano Iron Composite and its Removal Application to Methylene Blue
-
摘要:
这是一篇陶瓷及复合材料领域的论文。亚甲基蓝(MB)是工业染料废水中的典型污染物,不经处理任意排放会给水体带来非常大的危害。本文通过对凹凸棒石灼烧、有机超声改性和原位负载纳米铁制备了凹凸棒石/纳米铁复合材料(DDBAC/ATP/nZVI)。得到了复合材料的制备工艺:凹凸棒石原土经300 ℃焙烧1.5 h后加入20 mmol/100 g十二烷基二甲基苄基氯化铵(DDBAC),超声20 min,然后用液相还原法负载纳米铁,铁土比为1∶3、KBH4浓度为0.25 mol/L、反应时间为3 h。XRD、IR、SEM、BET、XPS等表征证实了DDBAC和纳米铁成功负载到凹凸棒石表面。复合材料对亚甲基蓝的较大吸附去除量为114.94 mg/g,60 d内应用性能稳定。
-
关键词:
- 陶瓷及复合材料 /
- 凹凸棒石 /
- 纳米铁 /
- 十二烷基二甲基苄基氯化铵 /
- 亚甲基蓝
Abstract:This is an article in the field of ceramics and composites. Methylene blue is a typical pollutant industrial wastewater.It will bring great harm to the water body if it is discharged arbitrarily without treatment. We prepared a kind of attapulgite/nano iron composite (DDBAC/ATP/nZVI), that the attapulgite was roasted, organic modified and then loaded with nano iron (nZVI) by liquid-phase reduction. The optimum preparation process is obtained: attapulgite raw soil is calcined at 300 ℃ for 1.5 h, 20 mmol/100 g benzalkonium chloride(DDBAC)is added, then ultrasonic is used for 20 min, and then nano iron is loaded by liquid-phase reduction method. The ratio of iron to soil is 1:3, KBH4 concentration is 0.25 mol/L and reaction time is 3 h. The XRD, FTRI, SEM, XPS, BET confirm that DDBAC and nano iron are successfully loaded on the surface of attapulgite. The maximum removal of methylene blue by DDBAC/ATP/nZVI is 114.94 mg/g, and the application performance of the DDBAC/ATP/nZVI remains stable within 60 days.
-
Key words:
- Ceramics and composites /
- Attapulgite /
- Nano iron /
- Benzalkoniumchloride /
- Methylene blue
-
-
表 1 凹凸棒石及DDBAC/ATP/nZVI复合材料的BET参数
Table 1. BET parameters of attapulgite and DDBAC/ATP/nZVI composites
样品 比表面积
/(m2/g)孔容
/(cc/g)孔(Dv(d))
/nmATP 52.080 0.079 2.091 DDBAC/ATP/nZVI 84.408 0.158 3.841 -
[1] Rai H S, Bhattacharyya M S, Singh J, et al. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment[J]. Critical Reviews in Environmental Science and Technology, 2005, 35(3):219-238. doi: 10.1080/10643380590917932
[2] Ngulube T, Gumbo J R, Masindi V, et al. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review[J]. Journal of Environmental Management, 2017, 191:35-57.
[3] Wang J, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701:135023. doi: 10.1016/j.scitotenv.2019.135023
[4] Deng C, Hu H, Yu H, et al. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity[J]. Journal of Materials Science, 2021, 56(4):2994-3010. doi: 10.1007/s10853-020-05427-3
[5] Wang J, Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401:126158. doi: 10.1016/j.cej.2020.126158
[6] Katheresan V, Kansedo J, Lau S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):4676-4697. doi: 10.1016/j.jece.2018.06.060
[7] Ghasemzadeh G, Momenpour M, Omidi F, et al. Applications of nanomaterials in water treatment and environmental remediation[J]. Frontiers of Environmental Science & Engineering, 2014, 8(4):471-482.
[8] Adeleye A S, Conway J R, Garner K, et al. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability[J]. Chemical Engineering Journal, 2016, 286:640-662. doi: 10.1016/j.cej.2015.10.105
[9] Tara N, Siddiqui S I, Rathi G, et al. Nano-engineered adsorbent for the removal of dyes from water: A review[J]. Current Analytical Chemistry, 2020, 16(1):14-40. doi: 10.2174/1573411015666190117124344
[10] Yan W, Lien H L, Koel B E, et al. Iron nanoparticles for environmental clean-up: recent developments and future outlook[J]. Environmental Science:Processes & Impacts, 2013, 15(1):63-77.
[11] Mu B, Wang A. Adsorption of dyes onto palygorskite and its composites: a review[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):1274-1294. doi: 10.1016/j.jece.2016.01.036
[12] Chen H, Zhao J, Zhong A, et al. Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue[J]. Chemical Engineering Journal, 2011, 174(1):143-150. doi: 10.1016/j.cej.2011.08.062
[13] Yan L, Qin L, Yu H, et al. Adsorption of acid dyes from aqueous solution by CTMAB modified bentonite: kinetic and isotherm modeling[J]. Journal of Molecular Liquids, 2015, 211:1074-1081. doi: 10.1016/j.molliq.2015.08.032
[14] Moulin P, Roques H. Zeta potential measurement of calcium carbonate[J]. Journal of Colloid and Interface Science, 2003, 261(1):115-126. doi: 10.1016/S0021-9797(03)00057-2
[15] Frost R L, Xi Y, He H. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption[J]. Journal of Colloid and Interface Science, 2010, 341(1):153-161. doi: 10.1016/j.jcis.2009.09.027
[16] Xu J, Zhang J, Wang Q, et al. Disaggregation of palygorskite crystal bundles via high-pressure homogenization[J]. Applied Clay Science, 2011, 54(1):118-123. doi: 10.1016/j.clay.2011.07.020
[17] Cao Z, Jia Y, Wang Q, et al. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation[J]. Applied Clay Science, 2021, 212:106213. doi: 10.1016/j.clay.2021.106213
[18] Jia Y, Ma H, Zhang W, et al. Z-scheme SnFe2O4-graphitic carbon nitride: Reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2020, 383:123172. doi: 10.1016/j.cej.2019.123172
[19] 彭书传, 王诗生, 陈天虎, 等. 坡缕石对水中亚甲基蓝的吸附动力学[J]. 硅酸盐学报, 2006(6):733-738.PENG S C, WANG S S, CHEN T H, et al. Adsorption kinetics of methylene blue onto purified palygorskite from aqueous solutions[J]. Journal of the Chinese Ceramic Society, 2006(6):733-738.
PENG S C, WANG S S, CHEN T H, et al. Adsorption kinetics of methylene blue onto purified palygorskite from aqueous solutions[J]. Journal of the Chinese Ceramic Society, 2006(6):733-738.
[20] Tan K B, Vakili M, Horri B A, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms[J]. Separation and Purification Technology, 2015, 150:229-242. doi: 10.1016/j.seppur.2015.07.009
-