Development Status and Research Progress of Unconventional Brine-type Lithium Resources
-
摘要:
这是一篇矿业工程领域的论文。锂作为新能源领域重要的电池原材料,其全球需求量正加速增长。长期以来中国需要大量进口锂原料,预计未来仍存在较大的需求缺口。地热卤水、油气田卤水、海水淡化废弃卤水等非常规卤水中所包含锂资源量可观,或将成为常规锂资源的有效补充。作为一种绿色、可持续的锂资源提取方式,非常规卤水型锂资源开发面临重大发展机遇。在中国四川、西藏、云南等地发现丰富的、尚未有效开发的非常规卤水型锂资源,对解决中国国内锂原料供应不足将有巨大帮助。通过梳理国内外非常规卤水型锂资源开发及其关键技术的现状与进展,为中国非常规卤水型锂资源开发提供参考。
Abstract:This is an article in the field of mining engineering. As an important battery raw material in the field of new energy, the global demand for lithium is accelerating. For a long time, China has needed to import a large amount of lithium raw materials, and there is still expected to be a significant demand gap in the future. Unconventional brine sources such as geothermal brine, oil and gas field brine, and desalination wastewater in seawater containing contain considerable lithium resources and may become an effective supplement to conventional lithium resources. As a green and sustainable method for extracting lithium resources, the development of unconventional brine-type lithium resources faces significant opportunities. The discovery of abundant unconventional brine-type lithium resources in Sichuan, Xizang, Yunnan and other places in China will be of great help to solve the shortage of lithium raw material supply in China. By summarizing the current status and progress of unconventional brine-type lithium resource development and its key technologies both domestically and internationally, this article provides a reference for the development of unconventional brine-type lithium resources in China.
-
Key words:
- Mining engineering /
- Lithium /
- Geothermal brines /
- Oil (gas) fieldbrines /
- Seawater /
- Critical minerals /
- Strategic minerals
-
-
表 1 传统盐田蒸发沉淀与直接提锂技术的对比
Table 1. Comparison between traditional evaporation precipitation in salt pans and direct lithium extraction
传统盐田蒸发沉淀 直接提锂 环境足迹 蒸发池的碳足迹和淡水使用量较高 消除或降低蒸发池的碳足迹,淡水使用量更低 生产用时 晒卤周期长 较短 采收率 较低(40%) 80%以上 最终产品品质 盐湖系碳酸锂存在钠、镁、钙、硼杂质偏高 电池级锂最终产品纯度更高 技术适用性 适合锂浓度高、镁锂比低的优质盐湖卤水 使低品位锂项目具有经济可行性 技术成熟度 相对成熟 尚未进行大规模和长时间的测试。其经济性和有效性仍有待确定。 技术复杂性 简单 较复杂 生产成本 低 成本可能更高,具体取决于位置、DLE 工艺类型、能源成本等多种因素。 表 2 目前主流的5种直接提锂技术
Table 2. Current mainstream 5 types of direct lithium extraction technology
技术名称 技术要点说明 商业成熟度 锂采收率/% 吸附 利用吸附剂的吸附工艺 已经投入商用 80~99.9 离子交换 利用树脂、铝酸盐或陶瓷实现离子交换装置 尚未投入商用 80~99.9 溶剂萃取 将萃取剂与卤水混合,将含锂溶液从卤水中分离 尚未投入商用 99.9 膜分离 通常和离子交换法及吸附法/溶剂萃取法一并使用。技术前景乐观的工艺包括纳滤法和逆渗透法 尚未投入商用 ≥99 电化学分离 利用吸附法或嵌入法从卤水中以电化学方式提取锂 尚未投入商用 >90 表 3 正在推进的部分非常规卤水直接提锂项目
Table 3. Some unconventional brine direct lithium extraction projects
公司名称 SRI International Vulcan Energy Resources 标准锂业 E3锂公司 项目 索尔顿海 上莱茵河谷 Lanxess Clearwater 所在地 美国加州 德国 美国阿肯色州 加拿大Alberta省 卤水类型 地热 地热 溴尾液 油田 锂浓度/(mg/L) 400 181 168 74.6 规划产量/(t/a) 20 000 40 000 20 900 20 000 技术 离子交换 吸附 吸附 吸附 锂回收率/% 90 90 90 >90 锂产品 碳酸锂 氢氧化锂 碳酸锂 氢氧化锂 -
[1] 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产——国际动向与思考[J]. 矿床地质, 2019, 38(4):689-698.MAO J W, YANG Z X, XIE G Q, et al. Critical minerals: international trends and thinking[J]. Mineral Deposits, 2019, 38(4):689-698.
MAO J W, YANG Z X, XIE G Q, et al. Critical minerals: international trends and thinking[J]. Mineral Deposits, 2019, 38(4):689-698.
[2] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2):106-111.ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status andscientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111.
ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: Current research status andscientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111.
[3] 刘文浩, 刘学, 郑军卫. 基于文献计量的国际关键矿产资源研究态势评估[J]. 矿产综合利用, 2021(5):59-66.LIU W H, LIU X, ZHENG J W. Bibliometric evaluation of international critical mineral resources research trend[J]. Multipurpose Utilization of Mineral Resources, 2021(5):59-66. doi: 10.3969/j.issn.1000-6532.2021.05.009
LIU W H, LIU X, ZHENG J W. Bibliometric evaluation of international critical mineral resources research trend[J]. Multipurpose Utilization of Mineral Resources, 2021(5):59-66. doi: 10.3969/j.issn.1000-6532.2021.05.009
[4] GOURCEROL B, GLOAGUEN E, MELLETON J, et al. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 2019, 109:494-519. doi: 10.1016/j.oregeorev.2019.04.015
[5] 陈其慎, 张艳飞, 邢佳韵, 等. 国内外战略性矿产厘定理论与方法[J]. 地球学报, 2021, 42(2):137-144.CHEN Q S, ZHANG Y F, XING J Y, et al. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geoscientica Sinica, 2021, 42(2):137-144. doi: 10.3975/cagsb.2020.102604
CHEN Q S, ZHANG Y F, XING J Y, et al. Methods of strategic mineral resources determination in China and abroad[J]. Acta Geoscientica Sinica, 2021, 42(2):137-144. doi: 10.3975/cagsb.2020.102604
[6] 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6):1189-1209.WANG D H. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
WANG D H. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6):1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003
[7] 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8.WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
[8] 徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37.XU Z Z, LIANG J H, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005
XU Z Z, LIANG J H, LI H, et al. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005
[9] Bradley, D. C. , Stillings, L. L. , Jaskula, B. W. , et al. Lithium, chapter k of critical mineral resources of the United States—economic and environmental geology and prospects for future supply[R]. U. S. Geological Survey Professional Paper 1802. 2017. https://pubs.usgs.gov/pp/1802/k/pp1802k.pdf
[10] Baspineiro, C. F. , Franco, J. , Flexer, V. Potential water recovery during lithium mining from high salinity brines[J]. Science of The Total Environment, 2020, 720 (137523).
[11] Flexer, V. , Baspineiro, C. F. , Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing[J]. Science of The Total Environment, 2018, 639, 1188–1204.
[12] Schomberg, A. C. , Bringezu, S. , Flörke, M. Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage[J]. Communications Earth & Environment. 2021, 2, 1-10.
[13] Marazuela, M. A. , Ayora, C. , Vázquez-Suñé, et al. Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): a thermohaline flow modelling approach[J]. Science of The Total Environment. 2020, 739 (139959).
[14] Liu W J, AgusdinataD B. , MyintS W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile[J]. International Journal of Applied Earth Observation and Geoinformation. 2019, 80, 145-156.
[15] Yan G B, Wang M Z, Grant T. Hill, et al. Defining the challenges of Li extraction with olivine host: The roles of competitor and spectator ions[J]. Proceedings of the National Academy of Sciences, 2022, 119. DOI: 10.1073/pnas.2200751119
[16] Stringfellow, W. T. ; Dobson, P. F. Technology for the recovery of lithium from geothermal brines[J]. Energies 2021, 14, 6805. https://doi.org/10.3390/en14206805
[17] Amit K, Hiroki F, Alan HT, et al. Lithium recovery from oil and gas produced water: a need for a growing energy industry[J]. ACS Energy Lett. 2019, 4, 6, 1471–1474
[18] 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1):25-29CAI Y L, LI J W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1):25-29 doi: 10.3975/cagsb.2017.01.05
CAI Y L, LI J W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1):25-29 doi: 10.3975/cagsb.2017.01.05
[19] 隰弯弯, 赵宇浩, 倪培, 等. 锂矿主要类型、特征、时空分布及找矿潜力分[J]. 沉积与特提斯地质. 2022. DOI:10.19826/j.cnki.1009-3850.2022.04002.XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethyan Geology, 2022. DOI:10.19826/j.cnki.1009-3850.2022.04002.
XI W W, ZHAO Y H, NI P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethyan Geology, 2022. DOI:10.19826/j.cnki.1009-3850.2022.04002.
[20] 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120.WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019
WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019
[21] 高娟琴, 王登红, 王伟, 等. 国内外主要油(气)田水中锂提取现状及展望[J]. 地质学报, 2019, 93(6): 1489-1500.GAO J Q, WANG D H, WANG W, et al. Current status and prospects of lithium extraction in major domestic and foreign oil (gas) field waters[J]. Acta Geologica Sinica, 93(6): 1489-1500
GAO J Q, WANG D H, WANG W, et al. Current status and prospects of lithium extraction in major domestic and foreign oil (gas) field waters[J]. Acta Geologica Sinica, 93(6): 1489-1500
[22] Chung K S, Lee J C, Kim E J, et al. Recovery of lithium from seawater using nano-manganese oxide adsorbents prepared by gel process[J]. Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 And 2, 2004, 449(4):277-280.
[23] Liu C, Li Y B, Lin D C, et al. Lithium extraction from seawater through pulsed electrochemical intercalation[J]. Joule (2020), https://doi.org/10.1016/j.joule.2020.05.017
[24] Li Z, Li C Y, Liu X W, et al. Continuous electrical pumping membrane process for seawater lithium mining[J]. Energy and Environmental Science, 2021, 14:3152-3159. doi: 10.1039/D1EE00354B
[25] Liu L, Zhang H, Zhang Y, et al. Lithium extraction from seawater by manganese oxide ion sieve MnO2×0.5H2O[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015, 468: 280-284
[26] Harvianto G, Kim SH, Ju CS. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater[J]. Rare Metals. 2015, 35: 948-953
[27] Hoshino T. Development of technology for recovering lithium from seawater by electrodialysis using ionic liquid membrane[J]. Fusion Engineering and Design, 2013, 88(11):2956-2959. doi: 10.1016/j.fusengdes.2013.06.009
[28] 王登红, 代鸿章, 刘善宝, 等. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 2022, 28(5):743-764.WANG D H, DAI H Z, LIU S B, et al. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 2022, 28(5):743-764. doi: 10.12090/j.issn.1006-6616.20222811
WANG D H, DAI H Z, LIU S B, et al. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 2022, 28(5):743-764. doi: 10.12090/j.issn.1006-6616.20222811
[29] 王晨光, 郑绵平, 张雪飞, 等. 青藏高原南部地热型锂资源[J]. 科技导报, 2020, 38(15):24-36.WANG C G, ZHENG M P, ZHANG X F, et al. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.
WANG C G, ZHENG M P, ZHANG X F, et al. Geothermal-type lithium resources in Southern Tibetan Plateau[J]. Science & Technology Review, 2020, 38(15):24-36.
[30] Sun S, Yu X P, Li M L, et al. Green recovery of lithium from geothermal water based on a novel lithium iron phosphate electrochemical technique[J]. Journal of Cleaner Production, 2020, 247:119178. doi: 10.1016/j.jclepro.2019.119178
[31] 蔡美峰, 多吉, 陈湘生, 等. 深部矿产和地热资源共采战略研究[J]. 中国工程科学, 2021, 23(6):43-51CAI M F, DUO J, CHEN X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources[J]. Strategic Study of CAE, 2021, 23(6):43-51 doi: 10.15302/J-SSCAE-2021.06.006
CAI M F, DUO J, CHEN X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources[J]. Strategic Study of CAE, 2021, 23(6):43-51 doi: 10.15302/J-SSCAE-2021.06.006
[32] 高娟琴, 于扬, 仲佳爱, 等. 川东北黄金口背斜ZK001钻孔流体地球化学及含锂特征[J]. 地球科学与环境学报, 2019, 41(2):197-208.GAO J Q, YU Y, ZHONG J A, et al. Geochemical and li-bearing characteristics of fluids from borehole zk001 in Huangjinkou anticline of the Northeastern Sichuan, China[J]. Journal of Earth Sciences and Environment, 2019, 41(2):197-208. doi: 10.3969/j.issn.1672-6561.2019.02.006
GAO J Q, YU Y, ZHONG J A, et al. Geochemical and li-bearing characteristics of fluids from borehole zk001 in Huangjinkou anticline of the Northeastern Sichuan, China[J]. Journal of Earth Sciences and Environment, 2019, 41(2):197-208. doi: 10.3969/j.issn.1672-6561.2019.02.006
[33] 林耀庭, 陈绍兰. 四川盆地地下卤水勘探开发前景展望[J]. 盐湖研究, 2008(1):1-7.LIN Y T, CHEN S L. Exploration and development prospect of underground brine in Sichuan Basin[J]. Journal of Salt Lake Research, 2008(1):1-7.
LIN Y T, CHEN S L. Exploration and development prospect of underground brine in Sichuan Basin[J]. Journal of Salt Lake Research, 2008(1):1-7.
[34] 余小灿, 刘成林, 王春连, 等. 江汉盆地大型富锂卤水矿床成因与资源勘查进展: 综述[J]. 地学前缘, 2022, 29(1): 107-123YU X C, LIU C L, WANG C L, et al. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review[J]. Earth Science Frontiers, 2022, 29(1): 107-123
YU X C, LIU C L, WANG C L, et al. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review[J]. Earth Science Frontiers, 2022, 29(1): 107-123
[35] 陈新军, 李倩文. 江汉盆地卤水锂资源特征及开发利用前景[J]. 国土资源情报, 2021, 11:44-49CHEN X J, LI Q W. The Characteristics and exploitation prospect of brine lithium in Jianghan Basin[J]. Land and Resources Information, 2021, 11:44-49
CHEN X J, LI Q W. The Characteristics and exploitation prospect of brine lithium in Jianghan Basin[J]. Land and Resources Information, 2021, 11:44-49
[36] 陈立, 杨立, 刘韬, 等. 西南油气田含锂气田水资源调查分析[J]. 石油与天然气化工. 2023. https://kns.cnki.net/kcms/detail//51.1210.TE.20230214.1045.002.htmlCHEN L, YANG L, LIU T, et al. Investigation and analysis of lithium-containing gas field water resource in Southwest Oil and Gas Field[J]. Chemical Engineering of Oil & Gas, 2023. https://kns.cnki.net/kcms/detail//51.1210.TE.20230214.1045.002.html
CHEN L, YANG L, LIU T, et al. Investigation and analysis of lithium-containing gas field water resource in Southwest Oil and Gas Field[J]. Chemical Engineering of Oil & Gas, 2023. https://kns.cnki.net/kcms/detail//51.1210.TE.20230214.1045.002.html
[37] Zhang H Q, Ren Y X, Wu X, et al. An interface-modified solid-state electrochemical device for lithium extraction from seawater[J]. Journal of Power Sources, 2021, 482:228938 doi: 10.1016/j.jpowsour.2020.228938
[38] Yang S X, Zhang F, Ding H P, et al. Lithium Metal Extraction from Seawater[J]. Joule, 2018, 2:1648-1651 doi: 10.1016/j.joule.2018.07.006
[39] Wall A. Competitiveness of direct mineral extraction from geothermal brines[J]. Trans. -Geotherm. Resour. Counc. 2019, 43, 6.
[40] Zhao Z W, Liu G, Jia H, et al. Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio[J]. Journal of Membrane Science, 2020, 596:117685 doi: 10.1016/j.memsci.2019.117685
[41] 徐文华, 刘冬福, 何利华, 等. 电化学脱嵌法盐湖提锂电极反应动力学研究[J]. 化工学报, 2021, 72(6):3105-3115XU W H, LIU D F, HE L H, et al. Kinetic study on electrochemical intercalation/deintercalation method for lithium extraction from brine[J]. CIESC Journal, 2021, 72(6):3105-3115
XU W H, LIU D F, HE L H, et al. Kinetic study on electrochemical intercalation/deintercalation method for lithium extraction from brine[J]. CIESC Journal, 2021, 72(6):3105-3115
-