锂辉石晶体结构与浮选药剂之间的作用机理研究现状

李明曦, 田小松, 王飞旺, 粱泽跃, 戴惠新, 杨斌. 锂辉石晶体结构与浮选药剂之间的作用机理研究现状[J]. 矿产综合利用, 2024, 45(4): 27-34. doi: 10.3969/j.issn.1000-6532.2024.04.004
引用本文: 李明曦, 田小松, 王飞旺, 粱泽跃, 戴惠新, 杨斌. 锂辉石晶体结构与浮选药剂之间的作用机理研究现状[J]. 矿产综合利用, 2024, 45(4): 27-34. doi: 10.3969/j.issn.1000-6532.2024.04.004
LI Mingxi, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, DAI Huixin, YANG Bin. Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 27-34. doi: 10.3969/j.issn.1000-6532.2024.04.004
Citation: LI Mingxi, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, DAI Huixin, YANG Bin. Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 27-34. doi: 10.3969/j.issn.1000-6532.2024.04.004

锂辉石晶体结构与浮选药剂之间的作用机理研究现状

  • 基金项目: 国家自然科学基金资助项目(52364033);中国博士后基金项目资助(2021M693841);矿物加工科学与技术国家重点实验室开放基金(BGRIMM-KJSKL-2021-03)
详细信息
    作者简介: 李明曦(1999-),女,硕士,研究方向为浮选理论与工艺
    通讯作者: 戴惠新(1966-),男,教授,研究方向为选矿理论与工艺,磁电选矿设备开发与数值模拟,资源综合利用,磨矿理论与工艺
  • 中图分类号: TD953;TD913

Research Status of the Mechanism of Action between Spodumene Crystal Structure and Flotation Agent

More Information
  • 这是一篇矿物加工工程领域的论文。锂矿产是我国重要的战略资源,目前最常用浮选法来进行锂矿石的选别,本文从锂辉石晶体结构的角度出发,探讨了锂辉石的晶体结构构造特性及其与浮选药剂之间的作用机理,文中从金属阳离子活化剂、有机抑制剂、无机抑制剂、阴离子捕收剂、阳离子捕收剂、混合捕收剂、新型捕收剂七个方面分别进行阐述,对了解锂辉石与药剂之间的作用特点、研发新型高效的浮选药剂、优化选矿工艺流程等具有重要意义。

  • 加载中
  • 图 1  优化后的锂辉石晶胞模型[20]

    Figure 1. 

    图 2  锂辉石不同晶面上Al位点吸附油酸根离子

    Figure 2. 

    图 3  单NaOL (a)和混合NaOL/DTAC (b)与锂辉石表面活性位点的反应

    Figure 3. 

    图 4  OHA/DDA在锂辉石表面的吸附模型

    Figure 4. 

    图 5  NaOL/DDA在锂辉石表面的吸附模型

    Figure 5. 

  • [1]

    舒宇, 乘舟越洋, 汪灵, 等. 我国锂辉石矿的工艺矿物学特征及其对浮选行为的影响[J]. 现代矿业, 2022, 38(12):55-61.SHU Y, CHENGZHOU Y Y, WANG L, et al. Process mineralogy characteristics of spodumene ore in China and its effecton flotation behavior[J]. Modern Mining, 2022, 38(12):55-61. doi: 10.3969/j.issn.1674-6082.2022.12.013

    SHU Y, CHENGZHOU Y Y, WANG L, et al. Process mineralogy characteristics of spodumene ore in China and its effecton flotation behavior[J]. Modern Mining, 2022, 38(12):55-61. doi: 10.3969/j.issn.1674-6082.2022.12.013

    [2]

    夏自发, 邓朝安, 邹毅仁, 等. 提高锂辉石矿选矿指标的工程化关键技术研究[J]. 中国矿山工程, 2022, 51(3):68-72.XIA Z F, DENG C A, ZOU R Y, et al. Study on key engineering technologies for improving mineral processing indexes of spodumene[J]. China Mine Engineering, 2022, 51(3):68-72. doi: 10.3969/j.issn.1672-609X.2022.03.013

    XIA Z F, DENG C A, ZOU R Y, et al. Study on key engineering technologies for improving mineral processing indexes of spodumene[J]. China Mine Engineering, 2022, 51(3):68-72. doi: 10.3969/j.issn.1672-609X.2022.03.013

    [3]

    朱加乾, 徐宝金, 宋学文, 等. 西澳某锂辉石矿石浮选试验[J]. 金属矿山, 2018(505):127-130.ZHU J Q, XU B J, SONG X W, et al. Flotation test on a spodumene ore from Western Australia[J]. Metal Mine, 2018(505):127-130.

    ZHU J Q, XU B J, SONG X W, et al. Flotation test on a spodumene ore from Western Australia[J]. Metal Mine, 2018(505):127-130.

    [4]

    梅亚军, 李潇雨, 李成秀, 等. 四川可尔因选锂尾矿锂辉石再选实验研究[J]. 矿产综合利用, 2023(4): 83-87+94.MEI Y J, LI X Y, LI C X, et al. Re-election of spodumene from lithium processing tailings in Keeryin, Sichuan[J]. Multipurpose Utilization of Mineral Resources. 2023(4): 83-87+94.

    MEI Y J, LI X Y, LI C X, et al. Re-election of spodumene from lithium processing tailings in Keeryin, Sichuan[J]. Multipurpose Utilization of Mineral Resources. 2023(4): 83-87+94.

    [5]

    董栋, 程宏伟, 郭保万, 等. 锂辉石选矿技术现状及展望[J]. 矿产保护与利用, 2018(216):130-134.DONG D, CHENG H W, GUO B W, et al. Research situation and prospect on the mineral processing technology of spodumene[J]. Conservation and Utilization of Mineral Resources, 2018(216):130-134.

    DONG D, CHENG H W, GUO B W, et al. Research situation and prospect on the mineral processing technology of spodumene[J]. Conservation and Utilization of Mineral Resources, 2018(216):130-134.

    [6]

    李强. 锂辉石提锂工艺方法综述[J]. 化工管理, 2022(647):147-149.LI Q. Overview of lithium extraction process from spodumene[J]. Chemical Engineering Management, 2022(647):147-149.

    LI Q. Overview of lithium extraction process from spodumene[J]. Chemical Engineering Management, 2022(647):147-149.

    [7]

    王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5):848-866.WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5):848-866.

    WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5):848-866.

    [8]

    程仁举, 李成秀, 刘星, 等. 新疆某伟晶岩型锂辉石矿浮选实验研究[J]. 矿产综合利用, 2023(4):88-94.CHENG R J, LI C X, LIU X, et al. Flotation of a pegmatite type spodumene ore in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2023(4):88-94. doi: 10.3969/j.issn.1000-6532.2023.04.014

    CHENG R J, LI C X, LIU X, et al. Flotation of a pegmatite type spodumene ore in Xinjiang[J]. Multipurpose Utilization of Mineral Resources, 2023(4):88-94. doi: 10.3969/j.issn.1000-6532.2023.04.014

    [9]

    李成秀, 程仁举, 刘星. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8.LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    [10]

    马广鹏, 韩建儒, 仪修杰, 等. 氧化锌单晶的水热生长与结晶习性[J]. 人工晶体学报, 2005, 34(5):772-777.MA G P, HAN J R, YI X J, et al. Hydrothermal growth and crystalline morphology of bulk ZnO single crystal[J]. Journal of Synthetic Crystals, 2005, 34(5):772-777. doi: 10.3969/j.issn.1000-985X.2005.05.002

    MA G P, HAN J R, YI X J, et al. Hydrothermal growth and crystalline morphology of bulk ZnO single crystal[J]. Journal of Synthetic Crystals, 2005, 34(5):772-777. doi: 10.3969/j.issn.1000-985X.2005.05.002

    [11]

    幸伟中. 矿物的可浮性及其分类[J]. 金属学报, 1965(2):259-269.XING W Z. The floatability of minerals and their classification[J]. Acta Metallurgica Sinica, 1965(2):259-269.

    XING W Z. The floatability of minerals and their classification[J]. Acta Metallurgica Sinica, 1965(2):259-269.

    [12]

    印万忠, 孙传尧. 矿物晶体结构与表面特性和可浮性关系的研究[J]. 国外金属矿选矿, 1998(4):8-11.YIN W Z, SUN C Y. Study on the relationship between mineral crystal structure and surface properties and floatability[J]. Metallic Ore Dressing Abroad, 1998(4):8-11.

    YIN W Z, SUN C Y. Study on the relationship between mineral crystal structure and surface properties and floatability[J]. Metallic Ore Dressing Abroad, 1998(4):8-11.

    [13]

    孙传尧, 周俊武, 贾木欣, 等. 基因矿物加工工程研究[J]. 有色金属(选矿部分), 2018(1):1-7.SUN C Y, ZHOU J W, JIA M X, et. al. Research on genetic mineral processing engineering[J]. Nonferrous Metals(Mineral Processing Section), 2018(1):1-7.

    SUN C Y, ZHOU J W, JIA M X, et. al. Research on genetic mineral processing engineering[J]. Nonferrous Metals(Mineral Processing Section), 2018(1):1-7.

    [14]

    于福顺, 闫平科, 蒋曼, 等. 锂辉石、钾长石矿物基因特性及其可浮性分析[J]. 金属矿山, 2020(528):75-80.YU F S, YAN P K, JIANG M, et al. Minerals genetic properties and their floatability of spodumene and potassium feldspar[J]. Metal Mine, 2020(528):75-80.

    YU F S, YAN P K, JIANG M, et al. Minerals genetic properties and their floatability of spodumene and potassium feldspar[J]. Metal Mine, 2020(528):75-80.

    [15]

    Duan Yonghua, Ma Lishi, Li Ping, et al. First-principles calculations of electronic structures and optical, phononic and thermodynamic properties of monoclinica-spodumene[J]. Ceramics International, 2017, 43:6312-6321. doi: 10.1016/j.ceramint.2017.02.038

    [16]

    Xu Longhua, Tian Jia, Wu Houqin, et al. Anisotropic surface chemistry proper tesandadsorption behavior of silicate mineral crystals[J]. Advances in Colloi d and Interface Science, 2018, 256:340-351. doi: 10.1016/j.cis.2018.02.004

    [17]

    徐龙华, 巫侯琴, 田佳, 等. 伟晶岩型铝硅酸盐矿物的晶体化学特征计算与分析[J]. 有色金属(选矿部分), 2017(6):22-27.XU L H, WU H Q, TIAN J, et al. Theoretical calculation and analysis of crystallochemical characteristic of pegmatite aluminosolicate minerals[J]. Nonferrous Metals(Mineral Processing Section), 2017(6):22-27.

    XU L H, WU H Q, TIAN J, et al. Theoretical calculation and analysis of crystallochemical characteristic of pegmatite aluminosolicate minerals[J]. Nonferrous Metals(Mineral Processing Section), 2017(6):22-27.

    [18]

    K·S·孟 , D·W·富尔斯特瑙 , 于福顺, 等. 从多种铝硅酸盐矿物中选择性浮选锂辉石的表面晶体化学研究[J]. 国外金属矿选矿, 2004(4): 25-31+9.K S MENG , D W Fuerstenau , YU F X, et al. Surface crystal chemistry study of selective flotation spodumene from a variety of aluminosilicate minerals[J]. Metallic Ore Dressing Abroad, 2004(4): 25-31+9.

    K S MENG , D W Fuerstenau , YU F X, et al. Surface crystal chemistry study of selective flotation spodumene from a variety of aluminosilicate minerals[J]. Metallic Ore Dressing Abroad, 2004(4): 25-31+9.

    [19]

    Beena R , Sathish P, Jyotsna T , et al. Amolecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science, 2011, (362): 510-516.

    [20]

    谢瑞琦, 朱一民, 刘杰, 等. 基于密度泛函理论的锂辉石晶体结构及(110)面表面化学基因特性研究[J]. 金属矿山, 2020(6):68-74.XIE R Q, ZHU Y M, LIU J, et al. The first principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6):68-74.

    XIE R Q, ZHU Y M, LIU J, et al. The first principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6):68-74.

    [21]

    周贺鹏. 微细粒锂辉石聚团浮选特性及矿物表面反应机理[D]. 北京: 中国矿业大学, 2020.ZHOU H P. Flotation characteristics of fine-grained spodumene agglomeration and reaction mechanism of mineral surface[D]. Beijing: China University of Mining and Technology, 2020.

    ZHOU H P. Flotation characteristics of fine-grained spodumene agglomeration and reaction mechanism of mineral surface[D]. Beijing: China University of Mining and Technology, 2020.

    [22]

    印万忠, 姚金, 唐远. 硅酸盐矿物分选[M]. 沈阳: 东北大学出版社, 2020, 12.YIN W Z, YAO J, TANG Y. Silicate mineral sorting[M]. Shenyang: Northeastern University Press, 2020, 12.

    YIN W Z, YAO J, TANG Y. Silicate mineral sorting[M]. Shenyang: Northeastern University Press, 2020, 12.

    [23]

    石海兰, 朱文龙. Fe3+对锂辉石浮选的影响及机理研究[J]. 稀有金属与硬质合金, 2015, 43(4):5-9.SHI H L, ZHU W L. Study on influence of Fe3+ on Spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4):5-9.

    SHI H L, ZHU W L. Study on influence of Fe3+ on Spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4):5-9.

    [24]

    Wei jun Liu, Shi qiu Zhang, Wei qing, et al, The effects of Ca(II) and Mg(II) ions on the flotation of spodumene using NaOL[J]. Minerals Engineering, Volume 79, 2015, Pages 40-46,

    [25]

    GAO J D, SUN W L, YU F. Understanding the activation mechanism of Ca2+ ion in sodium oleate fotation of spodumene: A new perspective[J/OL]. Chemical Engineering Science, 2021, 244: 116742.

    [26]

    于福顺, 孙永峰, 蒋曼, 等. 金属阳离子在锂辉石浮选中的活化行为及作用机理[J]. 中国有色金属学报, 2021, 31(1):203-210.YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):203-210. doi: 10.11817/j.ysxb.1004.0609.2021-36509

    YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):203-210. doi: 10.11817/j.ysxb.1004.0609.2021-36509

    [27]

    Fu-Shun Yu, Yu-Hua Wang, Jin-Ming Wang, et al. First-principle investigation on mechanism of Ca ion activating flotation of spodumene[J]. Rare Metals, 2014, 33(3):358-362. doi: 10.1007/s12598-014-0304-5

    [28]

    王淀佐, 林强, 蒋玉仁. 选矿与冶金药剂分子设计[M]. 长沙: 中南大学出版社, 1996. 220.WANG D Z, LIN Q, JIANG Y R. Mineral processing and metallurgical agent molecular design[M]. Changsha: Central South University Press, 1996. 220.

    WANG D Z, LIN Q, JIANG Y R. Mineral processing and metallurgical agent molecular design[M]. Changsha: Central South University Press, 1996. 220.

    [29]

    张良柱. 有机抑制剂对锂辉石和钠长石、石英浮选分离的影响及机理研究[D]. 赣州: 江西理工大学, 2022.ZHANG L Z. Effect and mechanism of organic inhibitors on flotation separation of spodumene, albite and quartz[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    ZHANG L Z. Effect and mechanism of organic inhibitors on flotation separation of spodumene, albite and quartz[D]. Ganzhou: Jiangxi University of Science and Technology, 2022.

    [30]

    王毓华, 于福顺, 陈兴华, 等. 锂辉石与绿柱石浮选分离的试验研究[J]. 稀有金属, 2005(3):320-324.WANG Y H, YU F S, CHEN X H, et al. Selective flotation between spodumene and beryl[J]. Chinese Journal of Rare Metals, 2005(3):320-324. doi: 10.3969/j.issn.0258-7076.2005.03.015

    WANG Y H, YU F S, CHEN X H, et al. Selective flotation between spodumene and beryl[J]. Chinese Journal of Rare Metals, 2005(3):320-324. doi: 10.3969/j.issn.0258-7076.2005.03.015

    [31]

    张忠汉 , 李毓康 , 孙籍 , 等. 关于碳酸钠、氟化钠、硫化钠对Ca2+、Fe3+活化的绿柱石、锂辉石作用规律及作用机理的研究[J]. 稀有金属, 1983(4): 2-9.ZHANG Z H, LI Y K, SUN J, et al. The action law and mechanism of sodium carbonate, sodium fluoride and sodium sulfide on the activation of Ca2+, Fe3+ beryl and spodumene[J]. Chinese Journal of Rare Metals, 1983(4): 2-9.

    ZHANG Z H, LI Y K, SUN J, et al. The action law and mechanism of sodium carbonate, sodium fluoride and sodium sulfide on the activation of Ca2+, Fe3+ beryl and spodumene[J]. Chinese Journal of Rare Metals, 1983(4): 2-9.

    [32]

    徐龙华, 田佳, 董发勤, 等. 油酸钠浮选锂辉石的表面晶体化学及各向异性[J]. 中国有色金属学报, 2016, 26(10):2214-2221.XU L H. TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10):2214-2221.

    XU L H. TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10):2214-2221.

    [33]

    ZHOU H , XIE F , ZHANG Y , et al. Insights into the floatability between spodumene and albite from crystal chemistry standpoint[J]. International Journal of Mining Science and Technology, 2022, 32(6): 11.

    [34]

    ZHU G, WANG X, LI E , et al. Wetting characteristics of spodumene surfaces as influenced by collector adsorption[J]. Minerals Engineering, 2019, 130: 117-128.

    [35]

    蒋巍. 锂辉石吸附药剂分子的动力学模拟[D]. 赣州: 江西理工大学, 2015.JIANG W. Kinetic simulation of spodumene adsorption agent molecules[D]. Ganzhou: Jiangxi University of Science and Technology, 2015.

    JIANG W. Kinetic simulation of spodumene adsorption agent molecules[D]. Ganzhou: Jiangxi University of Science and Technology, 2015.

    [36]

    舒超. 分选川西呷基卡锂辉石不同类型捕收剂的浮选行为[D]. 武汉: 武汉工程大学, 2018.SHU C. Flotation behavior of different types of collectors of Sichuanxi siakika spodumene[D]. Wuhan: Wuhan Institute of Technology, 2018.

    SHU C. Flotation behavior of different types of collectors of Sichuanxi siakika spodumene[D]. Wuhan: Wuhan Institute of Technology, 2018.

    [37]

    罗柳, 王毓华, 朱广丽, 等. 混合捕收剂浮选锂辉石的应用及作用机理[J]. 中国有色金属学报, 2020, 30(3):675-683.LUO L, WANG Y H, ZHU G L, et al. Application and interaction mechanism of mixed collector in flotation of spodumene[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3):675-683. doi: 10.11817/j.ysxb.1004.0609.2020-37550

    LUO L, WANG Y H, ZHU G L, et al. Application and interaction mechanism of mixed collector in flotation of spodumene[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3):675-683. doi: 10.11817/j.ysxb.1004.0609.2020-37550

    [38]

    田佳. 伟晶岩型锂辉石矿强化浮选分离的基础研究[D]. 绵阳: 西南科技大学, 2018.TIAN J. Basic research on enhanced flotation separation of pegmatite-type spodumene ore[D]. Mianyang: Southwest University of Science and Technology, 2018.

    TIAN J. Basic research on enhanced flotation separation of pegmatite-type spodumene ore[D]. Mianyang: Southwest University of Science and Technology, 2018.

    [39]

    Tian J , Xu L , Deng W, et al. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system[J]. Chemical Engineering Science, 2017, 164(Complete): 99-107.

    [40]

    舒开倩. 阴阳离子组合捕收剂对锂辉石矿的强化浮选分离及作用机理研究[D]. 绵阳: 西南科技大学, 2021.SHU K Q. Intensive flotation separation and mechanism of spodumene ore by anionic and cation combined collector[D]. Mianyang: Southwest University of Science and Technology, 2021.

    SHU K Q. Intensive flotation separation and mechanism of spodumene ore by anionic and cation combined collector[D]. Mianyang: Southwest University of Science and Technology, 2021.

    [41]

    李云. 某锂辉石矿浮选中组合捕收剂的试验研究及机理探讨[D]. 武汉: 武汉科技大学, 2019.LI Y. Experimental study and mechanism discussion of combined collector in flotation of a spodumene mine[D]. Wuhan: Wuhan University of Science and Technology, 2019.

    LI Y. Experimental study and mechanism discussion of combined collector in flotation of a spodumene mine[D]. Wuhan: Wuhan University of Science and Technology, 2019.

    [42]

    刘若华, 孙伟, 冯木, 等. 组合捕收剂浮选锂辉石的作用机理[J]. 中国有色金属学报, 2018, 28(3):612-617.LIU R H, SUN W, FENG M, et al. Mechanism on flotation of spodumene with combined collector[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3):612-617.

    LIU R H, SUN W, FENG M, et al. Mechanism on flotation of spodumene with combined collector[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(3):612-617.

    [43]

    冯木. 新型捕收剂在锂辉石浮选中的作用机理及表面化学分析[D]. 长沙: 中南大学, 2014.FENG M. Mechanism of action and surface chemical analysis of novel collector in spodumene flotation[D]. Changsha: Central South University, 2014.

    FENG M. Mechanism of action and surface chemical analysis of novel collector in spodumene flotation[D]. Changsha: Central South University, 2014.

    [44]

    谢瑞琦, 朱一民, 韩旭倩, 等. 新型锂辉石捕收剂DRQ-3的浮选性能及作用机理研究[J]. 金属矿山, 2019(512):97-101.XIE R Q, ZHU Y M, HAN X Q, et al. Flotation behaviors and mechanisms of a amphoteric chelated type collector DRQ-3 for spodumene flotation[J]. Metal Mine, 2019(512):97-101.

    XIE R Q, ZHU Y M, HAN X Q, et al. Flotation behaviors and mechanisms of a amphoteric chelated type collector DRQ-3 for spodumene flotation[J]. Metal Mine, 2019(512):97-101.

  • 加载中

(5)

计量
  • 文章访问数:  1427
  • PDF下载数:  752
  • 施引文献:  0
出版历程
收稿日期:  2023-10-27
刊出日期:  2024-08-25

目录