碱激发矿渣粉煤灰地质聚合物力学性能改性及其混凝土性能

马维, 何兆益. 碱激发矿渣粉煤灰地质聚合物力学性能改性及其混凝土性能[J]. 矿产综合利用, 2024, 45(4): 182-189. doi: 10.3969/j.issn.1000-6532.2024.04.027
引用本文: 马维, 何兆益. 碱激发矿渣粉煤灰地质聚合物力学性能改性及其混凝土性能[J]. 矿产综合利用, 2024, 45(4): 182-189. doi: 10.3969/j.issn.1000-6532.2024.04.027
MA Wei, HE Zhaoyi. Mechanical Property Modification of Alkali-activated Slag Fly Ash-based Geopolymer and its Concrete Property[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 182-189. doi: 10.3969/j.issn.1000-6532.2024.04.027
Citation: MA Wei, HE Zhaoyi. Mechanical Property Modification of Alkali-activated Slag Fly Ash-based Geopolymer and its Concrete Property[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4): 182-189. doi: 10.3969/j.issn.1000-6532.2024.04.027

碱激发矿渣粉煤灰地质聚合物力学性能改性及其混凝土性能

  • 基金项目: 国家自然科学基金(51978116);四川省教育厅项目(18ZB0307)
详细信息
    作者简介: 马维(1984-),女,硕士,讲师,主要研究方向为建筑工程项目管理及防护工程
  • 中图分类号: TD989;TU528

Mechanical Property Modification of Alkali-activated Slag Fly Ash-based Geopolymer and its Concrete Property

  • 这是一篇陶瓷及复合材料领域的论文。碱激发矿渣粉煤灰地质聚合物(ASFG)具有早期强度高、耐酸碱等优异性能,但脆性大、韧性差等缺陷影响其推广应用。为改善ASFG的性能且拓宽可应用于ASFG改性的矿物掺合料种类,以偏高岭土、沸石粉、膨润土、硅灰石粉、轻质碳酸钙和硅灰六种矿物掺合料作为改性材料,研究了其对ASFG力学性能的改性效果,并确定了硅灰为较佳改性材料。为深入探索硅灰对ASFG力学性能的改善作用,研究了硅灰掺量对ASFG力学性能的影响,并确定了硅灰的较佳掺量。最后,制备了碱激发矿渣-粉煤灰-硅灰地质聚合物混凝土(ASFSGC),并研究了其工作性、准静态力学性能和抗渗性。结果表明:膨润土、硅灰石粉、轻质碳酸钙、硅灰四种矿物掺合料对ASFG的抗折强度具有明显增强效果。硅灰石粉、硅灰两种矿物掺合料对ASFG的抗压强度具有明显增强效果。对ASFG而言,硅灰是一种优质矿物掺合料。随着硅灰掺量的增大,ASFG的力学性能先增大后减小,硅灰的较佳掺量为4%。ASFSGC具有良好的工作性、优异的抗渗性能,且ASFSGC的延性较普通硅酸盐水泥混凝土提高了14.1%。

  • 加载中
  • 图 1  不同龄期下矿物掺合料对ASFG抗折强度增长率(Iff)的影响

    Figure 1. 

    图 2  不同龄期下矿物掺合料对ASFG抗压强度增长率(Ifc)的影响

    Figure 2. 

    图 3  不同龄期下硅灰掺量对ASFG抗折强度增长率(Iff)的影响

    Figure 3. 

    图 4  不同龄期下硅灰掺量对ASFG抗压强度增长率(Ifc)的影响

    Figure 4. 

    图 5  不同硅灰掺量ASFG的强度掺量比(SVR

    Figure 5. 

    图 6  ASFG的微观形貌

    Figure 6. 

    图 7  ASFSGC与OPCC的应力应变曲线对比

    Figure 7. 

    表 1  矿渣和粉煤灰的化学组成/%

    Table 1.  Chemical composition of slags and fly ash

    氧化物SiO2Al2O3Fe2O3CaONa2OTiO2MgOK2OP2O5SO3其他烧失量
    矿渣29.219.45.838.60.20.62.80.12.60.40.3
    粉煤灰45.821.412.613.71.10.21.31.80.11.90.1
    下载: 导出CSV

    表 2  矿物掺合料的粒径/μm

    Table 2.  Particle size of mineral admixtures

    硅灰偏高岭土沸石粉膨润土硅灰石粉轻质碳酸钙
    0.11010751510
    下载: 导出CSV

    表 3  ASFG试件的配合比

    Table 3.  Mix ratio of ASFG specimens

    试件编号 矿物掺合
    料种类
    m(碱性激发剂)∶
    m(胶凝材料)
    m(胶凝材料+
    碱性激发剂)∶
    m(水)
    m(NaOH)∶
    m(Na2CO3)
    m(粉煤灰)∶
    m(矿渣)
    m(三聚磷酸钠)∶
    m(胶凝材料)
    m(矿物掺合料)∶
    m(胶凝材料)
    ASFG-K0 - 6.0% 2.8 1.3 0.6 0.4% -
    ASFG-T0 粉煤灰、矿渣 4.0%
    ASFG-M 偏高岭土
    ASFG-Z 沸石粉
    ASFG-B 膨润土
    ASFG-W 硅灰石粉
    ASFG-C 轻质碳酸钙
    ASFG-SF2 硅灰 2.0%
    ASFG-SF4 4.0%
    ASFG-SF6 6.0%
    ASFG-SF8 8.0%
    下载: 导出CSV

    表 4  ASFSGC试件的配合比/(kg/m3

    Table 4.  Mix ratio of ASFSGC specimens

    矿渣粉煤灰NaOHNa2CO3碎石三聚磷酸钠硅灰
    30418317135831 037184.61.9519.48
    下载: 导出CSV

    表 5  ASFG的强度测试实验结果/MPa

    Table 5.  Strength test results of ASFG

    试件编号 矿物掺合料种类 ff-3d fc-3d ff-7d fc-7d ff-28d fc-28d
    ASFG-K0 - 3.53 18.13 4.12 27.20 4.43 44.19
    ASFG-T0 粉煤灰、矿渣 3.88 19.08 4.51 31.32 4.82 48.38
    ASFG-M 偏高岭土 3.28 19.02 3.88 29.98 4.25 46.17
    ASFG-Z 沸石粉 3.62 18.39 4.32 28.19 4.69 45.27
    ASFG-B 膨润土 3.97 19.39 5.01 28.79 5.33 47.33
    ASFG-W 硅灰石粉 4.09 19.60 4.77 33.44 5.52 49.71
    ASFG-C 轻质碳酸钙 4.11 18.99 5.11 28.27 6.02 45.72
    ASFG-SF2 硅灰 3.94 18.35 4.87 30.19 4.95 49.57
    ASFG-SF4 4.13 20.78 5.40 36.95 6.43 54.57
    ASFG-SF6 4.09 22.24 5.23 36.01 6.37 55.14
    ASFG-SF8 3.26 21.65 4.27 34.97 4.32 51.47
    下载: 导出CSV

    表 6  ASFSGC抗折、抗压及劈拉实验测试结果

    Table 6.  Flexural, compressive and splitting test results of ASFSGC

    龄期/d抗折强度/MPa抗压强度/MPa劈拉强度/MPa
    33.2719.593.87
    73.6629.374.12
    284.8342.895.13
    下载: 导出CSV

    表 7  ASFSGC的渗水高度

    Table 7.  Water penetration height of ASFSGC

    试件编号测点渗水高度/mm
    12345678910
    ASFSGC-114129108111411121311.4
    ASFSGC-277656646445.5
    ASFSGC-3101199847810128.8
    ASFSGC-412131175867768.2
    ASFSGC-51917141312131517192015.9
    ASFSGC-686657532475.3
    结果ASFSGC试件的平均渗水高度/mm9.2
    下载: 导出CSV
  • [1]

    王伟杰, 金会心, 张延玲, 等. 含铬固废的资源化处理及循环利用研究进展[J]. 矿产综合利用, 2022, 2(5):64-70.WANG W J, JIN H X, ZHANG Y L, et al. Research progress on resource treatment and recycling of solid waste containing chromium[J]. Multipurpose Utilization of Mineral Resources, 2022, 2(5):64-70.

    WANG W J, JIN H X, ZHANG Y L, et al. Research progress on resource treatment and recycling of solid waste containing chromium[J]. Multipurpose Utilization of Mineral Resources, 2022, 2(5):64-70.

    [2]

    田崇霏, 王亚洲, 刘晓海, 等. 混掺纤维对粉煤灰-矿渣基地质聚合物工作性及力学性能的影响研究[J]. 混凝土, 2023(4):115-119.TIAN C F, WANG Y Z, LIU X H, et al. Study on the effect of mixed fiber on the workability and mechanical properties of flyash-slag base polymer[J]. Concrete, 2023(4):115-119. doi: 10.3969/j.issn.1002-3550.2023.04.024

    TIAN C F, WANG Y Z, LIU X H, et al. Study on the effect of mixed fiber on the workability and mechanical properties of flyash-slag base polymer[J]. Concrete, 2023(4):115-119. doi: 10.3969/j.issn.1002-3550.2023.04.024

    [3]

    李涛, 罗仙平, 钱有军. 加水一体化合成钨尾矿基地聚合物[J]. 矿产综合利用, 2019(1):83-87.LI T, LUO X P, QIAN Y J. Investigation on synthesis of tungsten tailings base geopolymer by water integration[J]. Multipurpose Utilization of Mineral Resources, 2019(1):83-87. doi: 10.3969/j.issn.1000-6532.2019.01.018

    LI T, LUO X P, QIAN Y J. Investigation on synthesis of tungsten tailings base geopolymer by water integration[J]. Multipurpose Utilization of Mineral Resources, 2019(1):83-87. doi: 10.3969/j.issn.1000-6532.2019.01.018

    [4]

    章玉容, 徐雅琴, 姚泽阳, 等. 配合比设计方法对再生混凝土生命周期评价的影响[J]. 浙江工业大学学报, 2020, 48(6):648-653.ZHANG Y R, XU Y Q, YAO Z Y, et al. Influence of mix ratio design method on life cycle evaluation of recycled concrete[J]. Journal of Zhejiang University of Technology, 2020, 48(6):648-653. doi: 10.3969/j.issn.1006-4303.2020.06.009

    ZHANG Y R, XU Y Q, YAO Z Y, et al. Influence of mix ratio design method on life cycle evaluation of recycled concrete[J]. Journal of Zhejiang University of Technology, 2020, 48(6):648-653. doi: 10.3969/j.issn.1006-4303.2020.06.009

    [5]

    孙英娟, 周旋, 岳丽娜, 等. 工业固废制备聚合氯化铝铁及其在煤泥废水处理中的应用[J]. 矿产综合利用, 2021(1):144-150.SUN Y J, ZHOU X, YUE L N, et al. Preparation of polyaluminium ferric chloride from industrial solid waste and its application in coal slurry wastewater treat ment[J]. Multipurpose Utilization of Mineral Resources, 2021(1):144-150. doi: 10.3969/j.issn.1000-6532.2021.01.025

    SUN Y J, ZHOU X, YUE L N, et al. Preparation of polyaluminium ferric chloride from industrial solid waste and its application in coal slurry wastewater treat ment[J]. Multipurpose Utilization of Mineral Resources, 2021(1):144-150. doi: 10.3969/j.issn.1000-6532.2021.01.025

    [6]

    潘钦锋, 陈亚辉, 颜桂云, 等. 钢纤维地质聚合物混凝土静态力学性能研究[J]. 武汉大学学报(工学版), 2023, 56(5):575-583.PAN Q F, CHEN Y H, YAN G Y, et al. Study on static mechanical properties of steel fiber geopolymer concrete[J]. Journal of Wuhan University (Engineering Science), 2023, 56(5):575-583.

    PAN Q F, CHEN Y H, YAN G Y, et al. Study on static mechanical properties of steel fiber geopolymer concrete[J]. Journal of Wuhan University (Engineering Science), 2023, 56(5):575-583.

    [7]

    魏铭, 张长森, 王旭, 等. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4):254-263.WEI M, ZHANG C S, WANG X, et al. Research progress of micro-nanomaterials modified geopolymers[J]. Materials Review, 2023, 37(4):254-263. doi: 10.11896/cldb.21020065

    WEI M, ZHANG C S, WANG X, et al. Research progress of micro-nanomaterials modified geopolymers[J]. Materials Review, 2023, 37(4):254-263. doi: 10.11896/cldb.21020065

    [8]

    ZHANG D, ZHU H, WU Q, et al. Investigation of the hydrophobicity and microstructure of fly ash-slag geopolymer modified by polydimethylsiloxane[J]. Construction and Building Materials, 2023, 369:130540. doi: 10.1016/j.conbuildmat.2023.130540

    [9]

    宋学锋, 王骏, 王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性[J]. 材料导报, 2017, 31(22):121-124+145.SONG X F, WANG J, WANG Y. Bending strength and bending toughness of fiber/hybrid fiber-slag geopolymer composites[J]. Materials Review, 2017, 31(22):121-124+145. doi: 10.11896/j.issn.1005-023X.2017.022.024

    SONG X F, WANG J, WANG Y. Bending strength and bending toughness of fiber/hybrid fiber-slag geopolymer composites[J]. Materials Review, 2017, 31(22):121-124+145. doi: 10.11896/j.issn.1005-023X.2017.022.024

    [10]

    汪应玲, 罗绍华, 姜茂发, 等. 铁尾矿制备地质聚合物工艺条件研究[J]. 矿产综合利用, 2019(5):121-126.WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    [11]

    肖建庄, 邓琪, 夏冰. 混凝土制备低碳化演进与展望[J]. 建筑科学与工程学报, 2022, 39(5):1-12.XIAO J Z, DENG Q, XIA B. Evolution and prospect of low-carbon concrete preparation[J]. Journal of Building Science and Engineering, 2022, 39(5):1-12.

    XIAO J Z, DENG Q, XIA B. Evolution and prospect of low-carbon concrete preparation[J]. Journal of Building Science and Engineering, 2022, 39(5):1-12.

    [12]

    吴丽萍, 王军. 铁尾矿粉-硅粉矿物掺合料对混凝土性能的影响[J]. 矿产综合利用, 2023(2):184-190.WU L P, WANG J. Effect of iron tailing powder and silica powder mineral admixture on performance of concrete[J]. Multipurpose Utilization of Mineral Resources, 2023(2):184-190. doi: 10.3969/j.issn.1000-6532.2023.02.028

    WU L P, WANG J. Effect of iron tailing powder and silica powder mineral admixture on performance of concrete[J]. Multipurpose Utilization of Mineral Resources, 2023(2):184-190. doi: 10.3969/j.issn.1000-6532.2023.02.028

    [13]

    孙大全, 顾泽宇, 孙硕, 等. 碱激发粉煤灰-硅灰基地质聚合物的性能及表征[J]. 硅酸盐通报, 2020, 39(5):1533-1539.SUN D Q, GU Z Y, SUN S, et al. Properties and characterization of alkali-excited flyash-silica base polymer[J]. Bulletin of Silicate, 2020, 39(5):1533-1539.

    SUN D Q, GU Z Y, SUN S, et al. Properties and characterization of alkali-excited flyash-silica base polymer[J]. Bulletin of Silicate, 2020, 39(5):1533-1539.

    [14]

    高巧玲, 范功端. 硅灰对新型地质聚合物胶凝材料力学性能影响的研究进展[J]. 武汉工程大学学报, 2020, 42(5):540-545.GAO Q L, FAN G D. Research progress of effects of silica fume on mechanical properties of novel geopolymer cementification materials[J]. Journal of Wuhan Institute of Technology, 2020, 42(5):540-545.

    GAO Q L, FAN G D. Research progress of effects of silica fume on mechanical properties of novel geopolymer cementification materials[J]. Journal of Wuhan Institute of Technology, 2020, 42(5):540-545.

    [15]

    Sanghamitra Jena, Ramakanta Panigrahi. Study on the durability and microstructure of geopolymer concrete with ferrochrome slag and silica fume[J]. International Journal of Structural Engineering, 2022, 12(3):302-319. doi: 10.1504/IJSTRUCTE.2022.123745

  • 加载中

(7)

(7)

计量
  • 文章访问数:  590
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2023-06-27
刊出日期:  2024-08-25

目录