钛铁矿在混凝土液相环境下的物相转变

白龙, 封孝信, 刘刚. 钛铁矿在混凝土液相环境下的物相转变[J]. 矿产综合利用, 2024, 45(5): 168-175. doi: 10.3969/j.issn.1000-6532.2024.05.024
引用本文: 白龙, 封孝信, 刘刚. 钛铁矿在混凝土液相环境下的物相转变[J]. 矿产综合利用, 2024, 45(5): 168-175. doi: 10.3969/j.issn.1000-6532.2024.05.024
BAI Long, FENG Xiaoxin, LIU Gang. Phase Transition of Ilmenite in the Environment of Concrete Pore Solution[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 168-175. doi: 10.3969/j.issn.1000-6532.2024.05.024
Citation: BAI Long, FENG Xiaoxin, LIU Gang. Phase Transition of Ilmenite in the Environment of Concrete Pore Solution[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 168-175. doi: 10.3969/j.issn.1000-6532.2024.05.024

钛铁矿在混凝土液相环境下的物相转变

  • 基金项目: 国家自然科学基金(51772098)
详细信息
    作者简介: 白龙(1994-),男,硕士研究生,主要从事水泥基材料研究
    通讯作者: 封孝信(1962-),男,博士,教授,主要从事水泥基材料及固废资源化利用研究。
  • 中图分类号: TD981

Phase Transition of Ilmenite in the Environment of Concrete Pore Solution

More Information
  • 这是一篇陶瓷及复合材料领域的论文。 以钛铁矿石为研究对象,分析了FeTiO3在混凝土液相环境中可能的物相转变,以期为钛铁矿尾矿的利用提供依据。通过热力学计算分析了钛铁矿(FeTiO3)的热力学稳定性;将钛铁矿石粉分别在20 ℃和80 ℃的模拟混凝土孔溶液中浸泡28 d和270 d,采用XRD、SEM/EDS检测矿物转化情况;用钛铁矿石取代部分碎石制备了混凝土,并分别在20 ℃和80 ℃养护,研究对混凝土强度的影响。热力学计算结果表明,FeTiO3在有O2的环境中是不稳定的,可以转化为Fe3O4或Fe2O3及TiO2;钛铁矿在模拟混凝土孔溶液中的浸泡实验显示,钛铁矿没有明显变化;混凝土强度实验表明,不论是20 ℃还是80 ℃养护,钛铁矿石取代5%碎石时,混凝土抗压强度有所提高,取代量为15%时,抗压强度均又降低,原因为钛铁矿石中的石英发生了碱骨料反应。

  • 加载中
  • 图 1  钛铁矿石的XRD

    Figure 1. 

    图 2  20 ℃模拟孔溶液中钛铁矿石粉的XRD

    Figure 2. 

    图 3  钛铁矿原样的SEM(a)及对应矿粉的XRD位置的EDS(b)

    Figure 3. 

    图 4  20 ℃模拟孔溶液中28 d、270 d样品的SEM(a)、(c)及对应位置的EDS(b)、(d)

    Figure 4. 

    图 5  80 ℃模拟孔溶液中钛铁矿石粉的XRD

    Figure 5. 

    图 6  80 ℃模拟孔溶液中28 d (a)、270 d (c)样品的SEM及相应位置的EDS(b)、(d)

    Figure 6. 

    图 7  钛铁矿石掺量及养护温度对混凝土强度的影响

    Figure 7. 

    表 1  水泥及钛铁矿石的化学组成/%

    Table 1.  Chemical composition of cement and ilmenite

    原料 CaO SiO2 Al2O3 SO3 Fe2O3 MgO K2O TiO2 Na2O MnO P2O5 其他
    水泥 58.70 23.24 6.73 3.28 3.23 3.04 1.04 0.32 0.19 0.12 0.10 -
    钛铁矿石 6.46 21.40 11.27 0.71 41.03 5.35 0.23 7.13 1.64 0.18 4.32 0.29
    下载: 导出CSV

    表 2  钛铁矿石中各矿物含量

    Table 2.  Mineral content in ilmenite ore

    矿物名称钛铁矿磁铁矿石英方解石钠长石白云母绿泥石氟磷灰石
    标准卡片04-005-726300-019-062900-046-104501-089-130400-020-055400-046-131100-024-050604-006-5402
    相对含量/%12.816.26.010.713.05.813.322.2
    下载: 导出CSV

    表 3  混凝土配合比设计

    Table 3.  Concrete mix design

    编号 强度等级 水灰比 砂率/% 水/(kg/m3 水泥/(kg/m3 砂/(kg/m3 碎石/(kg/m3 钛铁矿石/(kg/m3 减水剂/%
    T0 C30 0.5 44 200 400 821 1040 0 1
    T5 C30 0.5 44 200 400 821 988 52(5%) 1
    T15 C30 0.5 44 200 400 821 884 156(15%) 1
    下载: 导出CSV

    表 4  反应中各物质标准状态下的热力学参数[22]

    Table 4.  Thermodynamic parameters of each substance in the reaction at standard conditions[22]

    化合物 $ {{S}}_{{m}}^\theta $/(J/(K·mol)) $ \Delta_{{f}} {H}_{{m}}^\theta $/(kJ·mol) $ \Delta_{{f}} {G}_{{m}}^\theta $/(kJ·mol)
    FeTiO3 105.855 -1 236.623 -1 159.221
    O2 110.876 -11.715 16.359
    Fe2O3 87.400 -824.640 -742.635
    Fe3O4 146.14 -1 115.726 -1 012.634
    TiO2(金红石) 50.375 -944.580 -889.336
    TiO2(锐钛矿) 49.915 -938.720 -883.303
    下载: 导出CSV

    表 5  反应式(1)的计算结果

    Table 5.  Calculation results of reaction equation (1)

    生成物 $ \Delta_r S^\theta $/(J/(K·mol)) $ \Delta_r H^\theta$/(kJ/mol) $ \Delta_r G^\theta $/(kJ/mol)
    TiO2(金红石) 910.596 -12 859.053 -9 663.139
    TiO2(锐钛矿) 908.756 -12 835.613 -9 639.007
    下载: 导出CSV

    表 6  反应式(2)的计算结果

    Table 6.  Calculation results of reaction equation (2)

    生成物 $ \Delta_r S^\theta $/(J/(K·mol)) $ \Delta_r H^\theta $/(kJ/mol) $ \Delta_r G^\theta $/(kJ/mol)
    TiO2(金红石) 1 340.536 -15 330.385 -14 300.251
    TiO2(锐钛矿) 1 337.776 -15 295.225 -14 264.053
    下载: 导出CSV
  • [1]

    QIN Y, CHEN Z, DING B, et al. Impact of sand mining on the carbon sequestration and nitrogen removal ability of soil in the riparian area of Lijiang River, China[J]. Environmental Pollution, 2020, 261(5):114220.

    [2]

    李鑫. 对榆林地区某采石场矿山环境治理的综合研究[J]. 山西建筑, 2021(9):146-150.LI X. Comprehensive study on mine environment control of a quarry in Yulin[J]. Shanxi Architecture, 2021(9):146-150.

    LI X. Comprehensive study on mine environment control of a quarry in Yulin[J]. Shanxi Architecture, 2021(9):146-150.

    [3]

    陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105.CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.

    CHEN C, ZHANG Y S, LI X Y, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105.

    [4]

    王飞旺, 崔毅琦, 童雄, 等. 钛铁矿选矿技术研究与应用[J]. 矿产综合利用, 2016(1):1-6.WANG F W, CUI Y Q, TONG X, et al. Research and application of beneficiation process for ilmenite[J]. Multipurpose Utilization of Mineral Resources, 2016(1):1-6. doi: 10.3969/j.issn.1000-6532.2016.01.001

    WANG F W, CUI Y Q, TONG X, et al. Research and application of beneficiation process for ilmenite[J]. Multipurpose Utilization of Mineral Resources, 2016(1):1-6. doi: 10.3969/j.issn.1000-6532.2016.01.001

    [5]

    刘星, 黄光耀, 曹玉川, 等. 钛铁矿浮选研究及生产实践进展[J]. 矿产综合利用, 2013(3):11-14.LIU X, HUANG G Y, CAO Y C, et al. Research on ilmenite flotation and progress of production practice[J]. Multipurpose Utilization of Mineral Resources, 2013(3):11-14. doi: 10.3969/j.issn.1000-6532.2013.03.002

    LIU X, HUANG G Y, CAO Y C, et al. Research on ilmenite flotation and progress of production practice[J]. Multipurpose Utilization of Mineral Resources, 2013(3):11-14. doi: 10.3969/j.issn.1000-6532.2013.03.002

    [6]

    印万忠, 徐东, 杨耀辉, 等. 承德某钒钛磁铁矿尾矿资源化利用技术研究[J]. 矿产综合利用, 2020(6):37-42.YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007

    YIN W Z, XU D, YANG Y H, et al. Research on the recycling technology for a vanadium-titanium magnetite tailings in Chengde[J]. Multipurpose Utilization of Mineral Resources, 2020(6):37-42. doi: 10.3969/j.issn.1000-6532.2020.06.007

    [7]

    陈桃, 简胜, 谢贤, 等. 钒钛磁铁矿尾矿综合利用研究进展[J]. 矿产保护与利用, 2021(2):174-178.CHEN T, JIAN S, XIE X, et al. Research progress on comprehensive utilization of vanadium-titanium magnetite tailings[J]. Conservation and Utilization of Mineral Resources, 2021(2):174-178.

    CHEN T, JIAN S, XIE X, et al. Research progress on comprehensive utilization of vanadium-titanium magnetite tailings[J]. Conservation and Utilization of Mineral Resources, 2021(2):174-178.

    [8]

    王昌松, 姚文俊, 陆小华. 钛铁矿资源综合利用概述[J]. 无机盐工业, 2014, 46(1):4-7.WANG C S, YAO W J, LU X H. Summarization of comprehensive utilization of ilmenite resources[J]. Inorganic Chemicals Industry, 2014, 46(1):4-7. doi: 10.3969/j.issn.1006-4990.2014.01.002

    WANG C S, YAO W J, LU X H. Summarization of comprehensive utilization of ilmenite resources[J]. Inorganic Chemicals Industry, 2014, 46(1):4-7. doi: 10.3969/j.issn.1006-4990.2014.01.002

    [9]

    杨佳, 李奎, 汤爱涛, 等. 钛铁矿资源综合利用现状与发展[J]. 材料导报, 2003, 17(8): 44-46.YANG J, LI K, TANG A T, et al. Comprehensive utilization of ilmenitere sources: present status and future prospect[J]. Materials Reports, 2003(8): 44-46.

    YANG J, LI K, TANG A T, et al. Comprehensive utilization of ilmenitere sources: present status and future prospect[J]. Materials Reports, 2003(8): 44-46.

    [10]

    陈达, 傅文章, 洪秉信, 等. 综合回收某钒钛磁铁矿贫矿石中伴生磷的研究[J]矿产综合利用, 2010(1): 23-25.CHEN D, FU W Z, HONG B X, et al. Research on the comprehensive recovery of associated apatite from a lean vanadiumcontaining titanomagnetite ore [J]. Multipurpose Utilization of Mineral Resources, 2010(1): 23-25.

    CHEN D, FU W Z, HONG B X, et al. Research on the comprehensive recovery of associated apatite from a lean vanadiumcontaining titanomagnetite ore [J]. Multipurpose Utilization of Mineral Resources, 2010(1): 23-25.

    [11]

    谭其尤, 陈波, 张裕书, 等. 攀西地区钒钛磁铁矿资源特点与综合回收利用现状[J]. 矿产综合利用, 2011(6):6-10.TAN Q Y, CHEN B, ZHANG Y S, et al. Characteristics and current situation of comprehensive utilization ofvanadium titano-magnetite resources in Panxiregion[J]. Multipurpose Utilization of Mineral Resources, 2011(6):6-10. doi: 10.3969/j.issn.1000-6532.2011.06.002

    TAN Q Y, CHEN B, ZHANG Y S, et al. Characteristics and current situation of comprehensive utilization ofvanadium titano-magnetite resources in Panxiregion[J]. Multipurpose Utilization of Mineral Resources, 2011(6):6-10. doi: 10.3969/j.issn.1000-6532.2011.06.002

    [12]

    NETO J A, ALBUQUERQUE D D M D, JÚNIOR N S A, et al. Effect of the addition of unreacted ilmenite (UOW) on the hydration of white portland cement-hydrated lime pastes[J]. Key Engineering Materials, 2019, 803: 289-293.

    [13]

    CONTRERAS M, GÁZQUEZ MJ, GARCÍA-DÍAZ I, et al. Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement[J]. Journal of Environmental Management, 2013, 128: 625-630.

    [14]

    CYR M, CARLES-GIBERGUES A, TAGNIT-HAMOU A. Titanium fume and ilmenite fines characterization for their use in cement-based materials[J]. Cement and Concrete Research, 2000, 30(7):1097-1104.

    [15]

    CHYLIŃSKI F, KUCZYŃSKI K, ŁUKOWSKI P. Application of ilmenite mud waste as an addition to concrete[J]. Materials, 2020, 13(4):866.

    [16]

    MAKARIOUS A S, EL-KOLALY M A, BASHTER I I, et al. Radiation distribution through ilmenite-limonite concrete and its application as a reactor biological shield[J]. International Journal of Radiation Applications and Instrumentation Part A Applied Radiation and Isotopes, 1989, 40(3):257-260.

    [17]

    SAHADATH H, MOLLAH A S, KABIR K A, et al. Calculation of the different shielding properties of locally developed ilmenite-magnetite (I-M) concrete[J]. Radioprotection, 2015(3):203-207.

    [18]

    WHEAT H, ELIEZER C. Some electrochemicalaspects of corrosion of steel in concrete[J]. Corrosion-Nace, 1985, 41(11):640-645.

    [19]

    封孝信. 孔溶液化学在混凝土研究中的应用[C]. 第二届高性能混凝土学术研讨会论文集, 1999: 196-199.FENG X X. Application of pore solution chemistry in concrete research[C]. Proceedings of the Second High Performance Concrete Symposium, 1999: 196-199.

    FENG X X. Application of pore solution chemistry in concrete research[C]. Proceedings of the Second High Performance Concrete Symposium, 1999: 196-199.

    [20]

    施锦杰, 孙伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响[J]. 建筑材料学报, 2011, 14(4):452-458.SHI J J, SUN W, GENG G Q. Effect of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4):452-458. doi: 10.3969/j.issn.1007-9629.2011.04.004

    SHI J J, SUN W, GENG G Q. Effect of simulated concrete pore solution on reinforcing steel passivation[J]. Journal of Building Materials, 2011, 14(4):452-458. doi: 10.3969/j.issn.1007-9629.2011.04.004

    [21]

    AHMED E, STÉPHANIE B, ABDELHAFID K, et al. Effectiveness of corrosion inhibitors in simulated concrete pore solution[J]. European Journal of Environmental and Civil Engineering, 2020, 24(13):2130-2150.

    [22]

    林传仙, 白正华, 张哲儒. 矿物及有关化合物热力学数据手册[M]. 北京: 科学出版社, 1985.LIN C X, BAI Z H, ZHANG Z R. Manual of thermodynamic data for minerals and related compounds[M]. Beijing: China Science Publishing and Media Ltd, 1985.

    LIN C X, BAI Z H, ZHANG Z R. Manual of thermodynamic data for minerals and related compounds[M]. Beijing: China Science Publishing and Media Ltd, 1985.

    [23]

    FAN Y G, HAN J, LI J M, et al. The Study on the dissolution process of oxygen and nitrogen in gas-soluble water[J]. Advanced Materials Research, 2014, 830:331-336.

  • 加载中

(7)

(6)

计量
  • 文章访问数:  63
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2022-01-15
刊出日期:  2024-10-25

目录