Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete
-
摘要:
这是一篇陶瓷及复合材料领域的论文。本文研究了复掺铁尾矿粉和石灰石粉的掺量和比例对混凝土性能的影响。结果表明:随着复掺矿粉比例的不断增大,复掺矿粉混凝土强度均呈现出先增大后减小的变化规律,并在复掺矿粉比例为1∶2时取得较大值。在同一冻融循环次数作用下,混凝土质量损失率随着复掺矿粉比例的增大呈现出先减小后增大的趋势,而混凝土的相对动弹性模量却呈现出先增大后减小的变化趋势。在同一测定位置处,随着复掺矿粉比例的不断增大,复掺矿粉混凝土氯离子含量均呈现出不断减小,且在比例为1∶2时复掺矿粉混凝土氯离子含量的下降变快。综合实验结果得到,石灰石粉掺量为20%时混凝土的强度特性较佳,复掺矿粉比例为1∶2时混凝土的强度和耐久性均达到较佳。
Abstract:This is an article in the field of ceramics and composites. Influence of the mixed mineral powder content and proportion on the performance of concrete were studied. The results show that with the continuous increase of the proportion of mixed slag powder, the strength of the mixed slag powder concrete shows a change rule that first increases and then decreases. And the maximum value is achieved when the ratio of compound ore powder is 1∶2. Under the effect of the same number of freeze-thaw cycles, the mass loss rate of concrete shows a trend of first decreasing and then increasing with the increase of the proportion of mixed mineral powder. However the relative dynamic elastic modulus of concrete shows a trend of first increasing and then decreasing. At the same measuring position, as the proportion of compound slag powder increases, the chloride ion content in the compound slag powder concrete shows a continuous decrease. And when the ratio is 1∶2, the chloride ion content of the mixed slag powder concrete decreases faster. The comprehensive test results show that the strength characteristics of limestone tailings concrete are the best when the content of limestone tailings is 20%. The strength and durability of concrete reach the best when the ratio of mixed mineral powder is 1∶2.
-
表 1 水泥的性质
Table 1. Properties of cement
名称 初凝时间
/h终凝时间
/h3 d 28 d 比表面积/
(m2/kg)抗压强度
/MPa抗折强度
/MPa抗压强度
/MPa抗折强度
/MPa水泥 2.48 3.12 25.02 4.77 44.93 8.41 360.23 表 2 石灰石粉(A)和铁尾矿粉(B)的矿物成分/%
Table 2. Mineral composition of limestone tailings powder (A) and iron tailings powder (B)
名称 SiO2 Fe2O3 Al2O3 CaO MgO 其他 烧失量 A 5.68 1.35 2.32 56.68 0.96 0.59 32.42 B 68.21 5.21 4.68 9.87 7.35 2.75 1.93 -
[1] 马卫华, 孟庆娟, 康洪震, 等. 铁尾矿砂混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2021, 42(S1):322-329.MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear behavior of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.
MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear behavior of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.
[2] 宁波, 闫艳, 左夏伟, 等. 铁尾矿砂混凝土力学特性实验研究[J]. 矿产综合利用, 2021(4):159-164.NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025
NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025
[3] 陈振富, 蔡双阳, 陶秋旺, 等. 铅锌尾矿砂混凝土抗压强度及屏蔽性能试验研究[J]. 混凝土, 2021(2):68-71+76.CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailings concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017
CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailings concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017
[4] 徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1):175-183.XU J J, YANG S T, LIU Z N. Study on the bond performance between alkali-activated mineral powder seawater sand concrete and CFRP reinforcement[J]. Engineering Mechanics, 2019, 36(S1):175-183. doi: 10.6052/j.issn.1000-4750.2018.05.S036
XU J J, YANG S T, LIU Z N. Study on the bond performance between alkali-activated mineral powder seawater sand concrete and CFRP reinforcement[J]. Engineering Mechanics, 2019, 36(S1):175-183. doi: 10.6052/j.issn.1000-4750.2018.05.S036
[5] 侯云芬, 刘锦涛, 赵思儒, 等. 铁尾矿粉对水泥砂浆性能的影响及机理分析[J]. 应用基础与工程科学学报, 2019, 27(5):1149-1157.HOU Y F, LIU J T, ZHAO S R, et al. Effect of iron tailings powder on cement mortar performance and mechanism analysis[J]. Journal of Applied Basic and Engineering Sciences, 2019, 27(5):1149-1157.
HOU Y F, LIU J T, ZHAO S R, et al. Effect of iron tailings powder on cement mortar performance and mechanism analysis[J]. Journal of Applied Basic and Engineering Sciences, 2019, 27(5):1149-1157.
[6] 黄晓燕, 倪文, 李克庆. 铁尾矿粉制备高延性纤维增强水泥基复合材料[J]. 工程科学学报, 2015, 37(11):1491-1497.HUANG X Y, NI W, LI K Q. Preparation of high ductility fiber reinforced cement-based composites with iron tailings powder[J]. Journal of Engineering Science, 2015, 37(11):1491-1497.
HUANG X Y, NI W, LI K Q. Preparation of high ductility fiber reinforced cement-based composites with iron tailings powder[J]. Journal of Engineering Science, 2015, 37(11):1491-1497.
[7] 吴凯, 施惠生, 徐玲琳, 等. 集料对含矿粉混凝土抗硫酸镁侵蚀性能的影响[J]. 建筑材料学报, 2016, 19(3):442-448.WU K, SHI H S, XU L L, et al. Effect of aggregate on magnesium sulfate resistance of concrete containing mineral powder[J]. Journal of Building Materials, 2016, 19(3):442-448. doi: 10.3969/j.issn.1007-9629.2016.03.005
WU K, SHI H S, XU L L, et al. Effect of aggregate on magnesium sulfate resistance of concrete containing mineral powder[J]. Journal of Building Materials, 2016, 19(3):442-448. doi: 10.3969/j.issn.1007-9629.2016.03.005
[8] 管俊峰, 鲁猛, 王昊, 等. 几何与非几何相似试件确定混凝土韧度及强度[J]. 工程力学, 2021, 38(9):45-63.GUAN J F, LU M, WANG H, et al. Determination of concrete toughness and strength by geometric and non-geometric similar specimens[J]. Engineering Mechanics, 2021, 38(9):45-63 doi: 10.6052/j.issn.1000-4750.2020.08.0573
GUAN J F, LU M, WANG H, et al. Determination of concrete toughness and strength by geometric and non-geometric similar specimens[J]. Engineering Mechanics, 2021, 38(9):45-63 doi: 10.6052/j.issn.1000-4750.2020.08.0573
[9] 韩宇栋, 王振波, 刘伟康, 等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报, 2021, 24(4):881-886.HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture performance of seawater coral aggregate concrete with different strength[J]. Journal of Building Materials, 2021, 24(4):881-886.
HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture performance of seawater coral aggregate concrete with different strength[J]. Journal of Building Materials, 2021, 24(4):881-886.
[10] 陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14):2348-2353.CHEN C, SUN Z P. Effect of silica fume on the performance of cement paste with or without alkali accelerator[J]. Material Guide, 2019, 33(14):2348-2353.
CHEN C, SUN Z P. Effect of silica fume on the performance of cement paste with or without alkali accelerator[J]. Material Guide, 2019, 33(14):2348-2353.
[11] 王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10):82-89.WANG S N, ZENG J J, FAN Z H. Durability analysis of marine high-performance concrete based on long-term exposure test[J]. Journal of Civil Engineering, 2021, 54(10):82-89.
WANG S N, ZENG J J, FAN Z H. Durability analysis of marine high-performance concrete based on long-term exposure test[J]. Journal of Civil Engineering, 2021, 54(10):82-89.
[12] 申爱琴, 杨景玉, 郭寅川, 等. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4):1-31.SHEN A Q, YANG J Y, GUO Y C, et al. Overview of curing cement concrete in SAP[J]. Journal of Transportation Engineering, 2021, 21(4):1-31.
SHEN A Q, YANG J Y, GUO Y C, et al. Overview of curing cement concrete in SAP[J]. Journal of Transportation Engineering, 2021, 21(4):1-31.
[13] 张登祥, 蒋晓明. 大流动性高强轻集料混凝土约束收缩及抗裂性能研究[J]. 铁道学报, 2021, 43(5):190-196.ZHANG D X, JIANG X M. Research on restrained shrinkage and crack resistance of high strength lightweight aggregate concrete with large fluidity[J]. Journal of Railway, 2021, 43(5):190-196. doi: 10.3969/j.issn.1001-8360.2021.05.023
ZHANG D X, JIANG X M. Research on restrained shrinkage and crack resistance of high strength lightweight aggregate concrete with large fluidity[J]. Journal of Railway, 2021, 43(5):190-196. doi: 10.3969/j.issn.1001-8360.2021.05.023