铁尾矿粉对石灰石粉混凝土力学性能和氢氧化钙含量的影响

张巨璟, 花东申. 铁尾矿粉对石灰石粉混凝土力学性能和氢氧化钙含量的影响[J]. 矿产综合利用, 2024, 45(5): 176-183, 203. doi: 10.3969/j.issn.1000-6532.2024.05.025
引用本文: 张巨璟, 花东申. 铁尾矿粉对石灰石粉混凝土力学性能和氢氧化钙含量的影响[J]. 矿产综合利用, 2024, 45(5): 176-183, 203. doi: 10.3969/j.issn.1000-6532.2024.05.025
ZHANG Jujing, HUA Dongshen. Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 176-183, 203. doi: 10.3969/j.issn.1000-6532.2024.05.025
Citation: ZHANG Jujing, HUA Dongshen. Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 176-183, 203. doi: 10.3969/j.issn.1000-6532.2024.05.025

铁尾矿粉对石灰石粉混凝土力学性能和氢氧化钙含量的影响

  • 基金项目: 国家自然科学基金项目(51974134)
详细信息
    作者简介: 张巨璟(1980-),女,硕士研究生,副教授,研究方向为土木建筑、建筑材料和改性混凝土
  • 中图分类号: TD981

Effect of Iron Tailings Powder on the Mechanical Properties and Calcium Hydroxide Content in Limestone Powder Concrete

  • 这是一篇陶瓷及复合材料领域的论文。本文研究了复掺铁尾矿粉和石灰石粉的掺量和比例对混凝土性能的影响。结果表明:随着复掺矿粉比例的不断增大,复掺矿粉混凝土强度均呈现出先增大后减小的变化规律,并在复掺矿粉比例为1∶2时取得较大值。在同一冻融循环次数作用下,混凝土质量损失率随着复掺矿粉比例的增大呈现出先减小后增大的趋势,而混凝土的相对动弹性模量却呈现出先增大后减小的变化趋势。在同一测定位置处,随着复掺矿粉比例的不断增大,复掺矿粉混凝土氯离子含量均呈现出不断减小,且在比例为1∶2时复掺矿粉混凝土氯离子含量的下降变快。综合实验结果得到,石灰石粉掺量为20%时混凝土的强度特性较佳,复掺矿粉比例为1∶2时混凝土的强度和耐久性均达到较佳。

  • 加载中
  • 图 1  石灰石粉和铁尾矿粉的粒径分布

    Figure 1. 

    图 2  混凝土的抗压强度和抗折强度的变化规律

    Figure 2. 

    图 3  混凝土凝结时间的变化规律

    Figure 3. 

    图 4  循环周期50和100次下混凝土的氯离子含量的变化规律

    Figure 4. 

    图 5  混凝土抗冻性能指标的变化规律

    Figure 5. 

    图 6  复掺矿粉混凝土的抗压强度和抗折强度的变化规律

    Figure 6. 

    图 7  复掺矿粉混凝土凝结时间的变化规律

    Figure 7. 

    图 8  复掺矿粉混凝土的氯离子含量的变化规律

    Figure 8. 

    图 9  复掺矿粉混凝土质量损失率和相对动弹模量的变化规律

    Figure 9. 

    图 10  复掺矿粉混凝土的TG-DTA曲线

    Figure 10. 

    图 11  氢氧化钙含量与石灰石粉和铁尾矿粉比例的关系

    Figure 11. 

    表 1  水泥的性质

    Table 1.  Properties of cement

    名称初凝时间
    /h
    终凝时间
    /h
    3 d28 d比表面积/
    (m2/kg)
    抗压强度
    /MPa
    抗折强度
    /MPa
    抗压强度
    /MPa
    抗折强度
    /MPa
    水泥2.483.1225.024.7744.938.41360.23
    下载: 导出CSV

    表 2  石灰石粉(A)和铁尾矿粉(B)的矿物成分/%

    Table 2.  Mineral composition of limestone tailings powder (A) and iron tailings powder (B)

    名称SiO2Fe2O3Al2O3CaOMgO其他烧失量
    A5.681.352.3256.680.960.5932.42
    B68.215.214.689.877.352.751.93
    下载: 导出CSV
  • [1]

    马卫华, 孟庆娟, 康洪震, 等. 铁尾矿砂混凝土梁受剪性能试验研究[J]. 建筑结构学报, 2021, 42(S1):322-329.MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear behavior of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.

    MA W H, MENG Q J, KANG H Z, et al. Experimental study on shear behavior of iron tailings concrete beams[J]. Journal of Building Structures, 2021, 42(S1):322-329.

    [2]

    宁波, 闫艳, 左夏伟, 等. 铁尾矿砂混凝土力学特性实验研究[J]. 矿产综合利用, 2021(4):159-164.NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025

    NING B, YAN Y, ZUO X W, et al. Experimental study on mechanical properties of iron tailings concrete[J]. Multipurpose Utilization of Mineral Resources, 2021(4):159-164. doi: 10.3969/j.issn.1000-6532.2021.04.025

    [3]

    陈振富, 蔡双阳, 陶秋旺, 等. 铅锌尾矿砂混凝土抗压强度及屏蔽性能试验研究[J]. 混凝土, 2021(2):68-71+76.CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailings concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017

    CHEN Z F, CAI S Y, TAO Q W, et al. Experimental study on compressive strength and shielding performance of lead-zinc tailings concrete[J]. Concrete, 2021(2):68-71+76. doi: 10.3969/j.issn.1002-3550.2021.02.017

    [4]

    徐金金, 杨树桐, 刘治宁. 碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J]. 工程力学, 2019, 36(S1):175-183.XU J J, YANG S T, LIU Z N. Study on the bond performance between alkali-activated mineral powder seawater sand concrete and CFRP reinforcement[J]. Engineering Mechanics, 2019, 36(S1):175-183. doi: 10.6052/j.issn.1000-4750.2018.05.S036

    XU J J, YANG S T, LIU Z N. Study on the bond performance between alkali-activated mineral powder seawater sand concrete and CFRP reinforcement[J]. Engineering Mechanics, 2019, 36(S1):175-183. doi: 10.6052/j.issn.1000-4750.2018.05.S036

    [5]

    侯云芬, 刘锦涛, 赵思儒, 等. 铁尾矿粉对水泥砂浆性能的影响及机理分析[J]. 应用基础与工程科学学报, 2019, 27(5):1149-1157.HOU Y F, LIU J T, ZHAO S R, et al. Effect of iron tailings powder on cement mortar performance and mechanism analysis[J]. Journal of Applied Basic and Engineering Sciences, 2019, 27(5):1149-1157.

    HOU Y F, LIU J T, ZHAO S R, et al. Effect of iron tailings powder on cement mortar performance and mechanism analysis[J]. Journal of Applied Basic and Engineering Sciences, 2019, 27(5):1149-1157.

    [6]

    黄晓燕, 倪文, 李克庆. 铁尾矿粉制备高延性纤维增强水泥基复合材料[J]. 工程科学学报, 2015, 37(11):1491-1497.HUANG X Y, NI W, LI K Q. Preparation of high ductility fiber reinforced cement-based composites with iron tailings powder[J]. Journal of Engineering Science, 2015, 37(11):1491-1497.

    HUANG X Y, NI W, LI K Q. Preparation of high ductility fiber reinforced cement-based composites with iron tailings powder[J]. Journal of Engineering Science, 2015, 37(11):1491-1497.

    [7]

    吴凯, 施惠生, 徐玲琳, 等. 集料对含矿粉混凝土抗硫酸镁侵蚀性能的影响[J]. 建筑材料学报, 2016, 19(3):442-448.WU K, SHI H S, XU L L, et al. Effect of aggregate on magnesium sulfate resistance of concrete containing mineral powder[J]. Journal of Building Materials, 2016, 19(3):442-448. doi: 10.3969/j.issn.1007-9629.2016.03.005

    WU K, SHI H S, XU L L, et al. Effect of aggregate on magnesium sulfate resistance of concrete containing mineral powder[J]. Journal of Building Materials, 2016, 19(3):442-448. doi: 10.3969/j.issn.1007-9629.2016.03.005

    [8]

    管俊峰, 鲁猛, 王昊, 等. 几何与非几何相似试件确定混凝土韧度及强度[J]. 工程力学, 2021, 38(9):45-63.GUAN J F, LU M, WANG H, et al. Determination of concrete toughness and strength by geometric and non-geometric similar specimens[J]. Engineering Mechanics, 2021, 38(9):45-63 doi: 10.6052/j.issn.1000-4750.2020.08.0573

    GUAN J F, LU M, WANG H, et al. Determination of concrete toughness and strength by geometric and non-geometric similar specimens[J]. Engineering Mechanics, 2021, 38(9):45-63 doi: 10.6052/j.issn.1000-4750.2020.08.0573

    [9]

    韩宇栋, 王振波, 刘伟康, 等. 不同强度海水珊瑚骨料混凝土断裂性能对比研究[J]. 建筑材料学报, 2021, 24(4):881-886.HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture performance of seawater coral aggregate concrete with different strength[J]. Journal of Building Materials, 2021, 24(4):881-886.

    HAN Y D, WANG Z B, LIU W K, et al. Comparative study on fracture performance of seawater coral aggregate concrete with different strength[J]. Journal of Building Materials, 2021, 24(4):881-886.

    [10]

    陈超, 孙振平. 硅灰对掺有无碱速凝剂水泥浆体性能的影响[J]. 材料导报, 2019, 33(14):2348-2353.CHEN C, SUN Z P. Effect of silica fume on the performance of cement paste with or without alkali accelerator[J]. Material Guide, 2019, 33(14):2348-2353.

    CHEN C, SUN Z P. Effect of silica fume on the performance of cement paste with or without alkali accelerator[J]. Material Guide, 2019, 33(14):2348-2353.

    [11]

    王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10):82-89.WANG S N, ZENG J J, FAN Z H. Durability analysis of marine high-performance concrete based on long-term exposure test[J]. Journal of Civil Engineering, 2021, 54(10):82-89.

    WANG S N, ZENG J J, FAN Z H. Durability analysis of marine high-performance concrete based on long-term exposure test[J]. Journal of Civil Engineering, 2021, 54(10):82-89.

    [12]

    申爱琴, 杨景玉, 郭寅川, 等. SAP内养生水泥混凝土综述[J]. 交通运输工程学报, 2021, 21(4):1-31.SHEN A Q, YANG J Y, GUO Y C, et al. Overview of curing cement concrete in SAP[J]. Journal of Transportation Engineering, 2021, 21(4):1-31.

    SHEN A Q, YANG J Y, GUO Y C, et al. Overview of curing cement concrete in SAP[J]. Journal of Transportation Engineering, 2021, 21(4):1-31.

    [13]

    张登祥, 蒋晓明. 大流动性高强轻集料混凝土约束收缩及抗裂性能研究[J]. 铁道学报, 2021, 43(5):190-196.ZHANG D X, JIANG X M. Research on restrained shrinkage and crack resistance of high strength lightweight aggregate concrete with large fluidity[J]. Journal of Railway, 2021, 43(5):190-196. doi: 10.3969/j.issn.1001-8360.2021.05.023

    ZHANG D X, JIANG X M. Research on restrained shrinkage and crack resistance of high strength lightweight aggregate concrete with large fluidity[J]. Journal of Railway, 2021, 43(5):190-196. doi: 10.3969/j.issn.1001-8360.2021.05.023

  • 加载中

(11)

(2)

计量
  • 文章访问数:  107
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2021-10-27
刊出日期:  2024-10-25

目录