中国自然资源航空物探遥感中心主办
地质出版社出版

ICESat-2数据监测青藏高原湖泊2018—2021年水位变化

马山木, 甘甫平, 吴怀春, 闫柏琨. 2022. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化. 自然资源遥感, 34(3): 164-172. doi: 10.6046/zrzyyg.2021329
引用本文: 马山木, 甘甫平, 吴怀春, 闫柏琨. 2022. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化. 自然资源遥感, 34(3): 164-172. doi: 10.6046/zrzyyg.2021329
MA Shanmu, GAN Fuping, WU Huaichun, YAN Bokun. 2022. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau. Remote Sensing for Natural Resources, 34(3): 164-172. doi: 10.6046/zrzyyg.2021329
Citation: MA Shanmu, GAN Fuping, WU Huaichun, YAN Bokun. 2022. ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau. Remote Sensing for Natural Resources, 34(3): 164-172. doi: 10.6046/zrzyyg.2021329

ICESat-2数据监测青藏高原湖泊2018—2021年水位变化

  • 基金项目:

    自然资源部中国地质调查局项目课题“流域水循环要素与自然资源遥感定量调查监测”(DD20221642-3)

详细信息
    作者简介: 马山木(1997-),男,硕士研究生,主要从事湖泊水文遥感应用研究。Email: mashanmu@163.com
  • 中图分类号: TP79

ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau

  • 湖泊水位变化是气候、生态环境变化、水资源评级研究的重要指标。以往测高卫星对中小型湖泊监测难度大,新发射的ICESat-2卫星可提升湖泊水位监测的全面性与精度。文章基于ICESat-2卫星陆地观测产品数据覆盖情况,对2018年10月—2021年4月期间青藏高原面积大于1 km2的473个湖泊进行高精度水位动态监测。从高原湖泊水位整体变化、流域和区域变化、典型湖泊水位月(或季)度的时间变化趋势3个方面,分析了湖泊水位的时空变化特征。研究表明: 近3 a来,青藏高原湖泊水位总体继续呈上升趋势,年均变化率为0.013 m/a; 大型湖泊水位上升明显,中型湖泊水位上升平缓,小型湖泊水位呈微弱下降。在空间分布上,青藏高原各流域湖泊水位呈上升趋势,水位呈下降趋势的湖泊多数分布在海拔相对较高的地区。监测期间,色林错水位上升达1 m,格仁错水位下降达1 m。该水位监测成果提供了青藏高原部分湖泊水位最新监测数据,有助于湖泊变化动态监测等研究。
  • 加载中
  • [1]

    Zhang Q, Liu C L, Xu C Y, et al. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin,China[J]. Journal of Hydrology, 2006, 324(1-4):255-265.

    [2]

    Wan W, Long D, Hong Y, et al. A lake data set for the Tibetan Plateau from the 1960s,2005,and 2014[J]. Scientific Data, 2016, 3:160039.

    [3]

    高乐, 廖静娟, 刘焕玲, 等. 卫星雷达测高的应用现状及发展趋势[J]. 遥感技术与应用, 2013, 28(6):978-983.

    [4]

    Gao L, Liao J J, Liu H L, et al. Applying status and development tendency of satellite Radar altimeter[J]. Remote Sensing Technolo-gy and Application, 2013, 28(6):978-983.

    [5]

    Hwang C, Cheng Y S, Han J, et al. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-family altimeters:Climate implication[J]. Remote Sensing, 2016, 8(6):446.

    [6]

    Gao L, Liao J, Shen G. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using Radar altimeter data (2002—2012)[J]. Journal of Applied Remote Sensing, 2013, 7(1):073470.

    [7]

    Song C, Huang B, Ke L, et al. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts[J]. Journal of Hydrology, 2014(514):131-144.

    [8]

    Chen J, Liao J. Monitoring lake level changes in China using multi-altimeter data (2016—2019)[J]. Journal of Hydrology, 2020, 590:125544.

    [9]

    姜卫平, 褚永海, 李建成, 等. 利用ENVISAT测高数据监测青海湖水位变化[J]. 武汉大学学报(信息科学版), 2008(1):64-67.

    [10]

    Jiang W P, Chu Y H, Li J C, et al. Water level variation of Qinghai Lake from altimeteric data[J]. Geomatics and Information Science of Wuhan University, 2008(1):64-67.

    [11]

    赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4):633-644.

    [12]

    Zhao Y, Liao J J, Shen G Z, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 2017, 21(4):633-644.

    [13]

    吴红波, 陈艺多. 联合Landsat影像和ICESat测高数据估计青海湖湖泊水量变化[J]. 水资源与水工程学报, 2020, 31(5):7-15,22.

    [14]

    Wu H B, Chen Y D. Estimation of lake water storage change of Qinghai Lake based on the ICESat satellite altimetry data and Landsat satellite imageries[J]. Journal of Water Resources and Water Engineering, 2020, 31(5):7-15,22.

    [15]

    廖静娟, 薛辉, 陈嘉明. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化[J]. 遥感学报, 2020, 24(12):1534-1547.

    [16]

    Liao J J, Xue H, Chen J M. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data[J]. Journal of Remote Sensing, 2020, 24(12):1534-1547.

    [17]

    Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 mission[J]. Remote Sensing of Environment, 2019(221):247-259.

    [18]

    Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751.

    [19]

    Markus T, Neumann T, Martino A, et al. The ice,cloud,and land elevation satellite-2 (ICESat-2):Science requirements,concept,and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273.

    [20]

    Li G Y. Earth observing satellite laser altimeter data processing method and engineer practice[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1691.

    [21]

    Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.

    [22]

    Grill G, Lehner B, Thieme M, et al. Mapping the world’s free-flowing rivers[J]. Nature, 2019, 569(7755):215-221.

    [23]

    Birkett C M, Reynolds C A, Deeb E J, et al. G-REALM:A lake/reservoir monitoring tool for water resources and regional security assessment[C]// American Geophysical Union Fall Meeting, 2018.

    [24]

    Cretaux J F, Jelinski W, Calmant S, et al. SOLS:A lake database to monitor in the near real time water level and storage variations from remote sensing data[J]. Advances in Space Research, 2011, 47(9):1497-1507.

    [25]

    Yamazaki D, Ikeshima D, Sosa J, et al. MERIT Hydro:A high-resolution global hydrography map based on latest topography dataset[J]. Water Resources Research, 2019, 55(6):5053-5073.

    [26]

    Cooley S W, Ryan J C, Smith L C. Human alteration of global surface water storage variability[J]. Nature, 2021, 591(7848):78-81.

    [27]

    Luo S, Song C, Zhan P, et al. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2[J]. Catena, 2021, 200:105177.

    [28]

    Zhang G Q, Yao T D, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geo-physical Research Letters, 2017, 44(11):5550-5560.

    [29]

    Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global and Planetary Change, 2014, 112:79-91.

    [30]

    Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189:11-18.

  • 加载中
计量
  • 文章访问数:  785
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2021-10-11
修回日期:  2022-09-15
刊出日期:  2022-09-21

目录