ICESat-2 data-based monitoring of 2018—2021 variations in the water levels of lakes in the Qinghai-Tibet Plateau
-
摘要: 湖泊水位变化是气候、生态环境变化、水资源评级研究的重要指标。以往测高卫星对中小型湖泊监测难度大,新发射的ICESat-2卫星可提升湖泊水位监测的全面性与精度。文章基于ICESat-2卫星陆地观测产品数据覆盖情况,对2018年10月—2021年4月期间青藏高原面积大于1 km2的473个湖泊进行高精度水位动态监测。从高原湖泊水位整体变化、流域和区域变化、典型湖泊水位月(或季)度的时间变化趋势3个方面,分析了湖泊水位的时空变化特征。研究表明: 近3 a来,青藏高原湖泊水位总体继续呈上升趋势,年均变化率为0.013 m/a; 大型湖泊水位上升明显,中型湖泊水位上升平缓,小型湖泊水位呈微弱下降。在空间分布上,青藏高原各流域湖泊水位呈上升趋势,水位呈下降趋势的湖泊多数分布在海拔相对较高的地区。监测期间,色林错水位上升达1 m,格仁错水位下降达1 m。该水位监测成果提供了青藏高原部分湖泊水位最新监测数据,有助于湖泊变化动态监测等研究。
-
关键词:
- 湖泊水位 /
- 时空变化 /
- ICESat-2卫星 /
- 青藏高原
Abstract: The variation in the water levels of lakes is an important indicator for the study of changes in climate and ecological environment and water resources rating. It was previously difficult for altimetry satellites to monitor small and medium-sized lakes, but the newly launched ICESat-2 satellite can improve the monitoring comprehensiveness and precision of lakes’ water levels. Based on the data coverage of ICESat-2 satellite land observation products, the high-precision dynamic monitoring of water levels was conducted for 473 lakes covering an area greater than 1 km2 in the Qinghai-Tibet Plateau from October 2018 to April 2021. The spatio-temporal variations of water levels of these lakes were analyzed from three aspects: the overall variations in the water levels of lakes in the Qinghai-Tibet Plateau, the basin-scaled and regional variations in the water levels of lakes, and the monthly or quarterly variation trends of water levels of typical lakes. The study results are as follows. In the past three years, the water levels of lakes in the Qinghai-Tibet Plateau continuously rose, with an average annual rate of variation of 0.013 m/a. The water levels of large, medium-sized, and small lakes rose significantly, rose gently, and dropped slightly, respectively. In terms of spatial distribution, the water levels of lakes in each basin generally showed an upward trend, and most of the lakes with declining water levels had relatively high elevations. During the monitoring period, the water level of Siling Co Lake rose by 1 m and that of Kering Tso Lake declined by 1 m. This study provides the latest monitoring data on the water levels of some lakes on the Qinghai-Tibet Plateau, which are conducive to the study of dynamic variation monitoring of lakes.-
Key words:
- lake level /
- spatio-temporal variation /
- ICESat-2 satellite /
- Qinghai-Tibet Plateau
-
-
[1] Zhang Q, Liu C L, Xu C Y, et al. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin,China[J]. Journal of Hydrology, 2006, 324(1-4):255-265.
[2] Wan W, Long D, Hong Y, et al. A lake data set for the Tibetan Plateau from the 1960s,2005,and 2014[J]. Scientific Data, 2016, 3:160039.
[3] 高乐, 廖静娟, 刘焕玲, 等. 卫星雷达测高的应用现状及发展趋势[J]. 遥感技术与应用, 2013, 28(6):978-983.
[4] Gao L, Liao J J, Liu H L, et al. Applying status and development tendency of satellite Radar altimeter[J]. Remote Sensing Technolo-gy and Application, 2013, 28(6):978-983.
[5] Hwang C, Cheng Y S, Han J, et al. Multi-decadal monitoring of lake level changes in the Qinghai-Tibet Plateau by the TOPEX/Poseidon-family altimeters:Climate implication[J]. Remote Sensing, 2016, 8(6):446.
[6] Gao L, Liao J, Shen G. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using Radar altimeter data (2002—2012)[J]. Journal of Applied Remote Sensing, 2013, 7(1):073470.
[7] Song C, Huang B, Ke L, et al. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts[J]. Journal of Hydrology, 2014(514):131-144.
[8] Chen J, Liao J. Monitoring lake level changes in China using multi-altimeter data (2016—2019)[J]. Journal of Hydrology, 2020, 590:125544.
[9] 姜卫平, 褚永海, 李建成, 等. 利用ENVISAT测高数据监测青海湖水位变化[J]. 武汉大学学报(信息科学版), 2008(1):64-67.
[10] Jiang W P, Chu Y H, Li J C, et al. Water level variation of Qinghai Lake from altimeteric data[J]. Geomatics and Information Science of Wuhan University, 2008(1):64-67.
[11] 赵云, 廖静娟, 沈国状, 等. 卫星测高数据监测青海湖水位变化[J]. 遥感学报, 2017, 21(4):633-644.
[12] Zhao Y, Liao J J, Shen G Z, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data[J]. Journal of Remote Sensing, 2017, 21(4):633-644.
[13] 吴红波, 陈艺多. 联合Landsat影像和ICESat测高数据估计青海湖湖泊水量变化[J]. 水资源与水工程学报, 2020, 31(5):7-15,22.
[14] Wu H B, Chen Y D. Estimation of lake water storage change of Qinghai Lake based on the ICESat satellite altimetry data and Landsat satellite imageries[J]. Journal of Water Resources and Water Engineering, 2020, 31(5):7-15,22.
[15] 廖静娟, 薛辉, 陈嘉明. 卫星测高数据监测青藏高原湖泊2010年—2018年水位变化[J]. 遥感学报, 2020, 24(12):1534-1547.
[16] Liao J J, Xue H, Chen J M. Monitoring lake level changes on the Tibetan Plateau from 2000 to 2018 using satellite altimetry data[J]. Journal of Remote Sensing, 2020, 24(12):1534-1547.
[17] Neuenschwander A, Pitts K. The ATL08 land and vegetation product for the ICESat-2 mission[J]. Remote Sensing of Environment, 2019(221):247-259.
[18] Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751.
[19] Markus T, Neumann T, Martino A, et al. The ice,cloud,and land elevation satellite-2 (ICESat-2):Science requirements,concept,and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273.
[20] Li G Y. Earth observing satellite laser altimeter data processing method and engineer practice[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1691.
[21] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
[22] Grill G, Lehner B, Thieme M, et al. Mapping the world’s free-flowing rivers[J]. Nature, 2019, 569(7755):215-221.
[23] Birkett C M, Reynolds C A, Deeb E J, et al. G-REALM:A lake/reservoir monitoring tool for water resources and regional security assessment[C]// American Geophysical Union Fall Meeting, 2018.
[24] Cretaux J F, Jelinski W, Calmant S, et al. SOLS:A lake database to monitor in the near real time water level and storage variations from remote sensing data[J]. Advances in Space Research, 2011, 47(9):1497-1507.
[25] Yamazaki D, Ikeshima D, Sosa J, et al. MERIT Hydro:A high-resolution global hydrography map based on latest topography dataset[J]. Water Resources Research, 2019, 55(6):5053-5073.
[26] Cooley S W, Ryan J C, Smith L C. Human alteration of global surface water storage variability[J]. Nature, 2021, 591(7848):78-81.
[27] Luo S, Song C, Zhan P, et al. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2[J]. Catena, 2021, 200:105177.
[28] Zhang G Q, Yao T D, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geo-physical Research Letters, 2017, 44(11):5550-5560.
[29] Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:A review[J]. Global and Planetary Change, 2014, 112:79-91.
[30] Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189:11-18.
-
计量
- 文章访问数: 785
- PDF下载数: 84
- 施引文献: 0