北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据

李沅柏, 李海泉, 周文孝, 王波, 常风, 李树才, 杨欣杰. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 40(7): 1117-1139.
引用本文: 李沅柏, 李海泉, 周文孝, 王波, 常风, 李树才, 杨欣杰. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 40(7): 1117-1139.
LI Yuanbai, LI Haiquan, ZHOU Wenxiao, WANG Bo, CHANG Feng, LI Shucai, YANG Xinjie. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 40(7): 1117-1139.
Citation: LI Yuanbai, LI Haiquan, ZHOU Wenxiao, WANG Bo, CHANG Feng, LI Shucai, YANG Xinjie. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 40(7): 1117-1139.

北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据

  • 基金项目:
    中国地质调查局项目《实物地质资料汇集与服务》(编号:DD20190411)、《天山-北山成矿带那拉提-营毛沱地区地质矿产调查(国土资源实物地质资料中心)》(编号:DD20160010)、国家自然科学基金项目《东昆仑诺木洪地区榴辉岩的发现及其对东昆仑北早古生代俯冲带演化过程的制约》(批准号:41703024)
详细信息
    作者简介: 李沅柏(1987-), 男, 硕士, 工程师, 从事地质矿产调查与研究工作。E-mail: 191503051@qq.com
    通讯作者: 李海泉(1993-), 男, 在读博士生, 从事前寒武纪地质学、地球化学研究工作。E-mail: lhq@cug.edu.cn
  • 中图分类号: P534.3;P597

Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province

More Information
  • 北山造山带作为中亚造山带南缘一个重要的构造带,经历了长期、多阶段、多地体的增生-拼合过程。北山造山带内具有广泛的前寒武纪基底分布,且古生代地壳显著增生。因此,在前人工作的基础上,旨在进一步厘定北山造山带在新元古代这一重要历史时期的构造演化过程,研究北山造山带内前寒武纪基底的归属,探讨其在古亚洲洋演化乃至更大尺度构造演化中的地位。在甘肃北山南带铜矿道班—红沟山—大湾铁矿厂一带分别采集了似斑状黑云二长花岗岩和流纹岩,并对2套样品进行岩相学、地球化学和锆石U-Pb年代学研究。样品的主量元素均具有高硅、富碱、富钾、过铝质、低镁、低钙特征。稀土元素均表现出明显的轻、重稀土元素分异现象,以及负Eu异常的特征。微量元素均表现出Nb、Ta元素等高场强元素亏损,Sr、Ba等大离子亲石元素富集的特征。岩石的U-Pb测年结果非常接近,似斑状黑云二长花岗岩的锆石年龄加权平均值为892.3±5.1 Ma,流纹岩的年龄加权平均值为870.4±4.5 Ma。所有证据表明,似斑状黑云二长花岗岩为S型花岗岩,形成于碰撞环境,且源岩(浆)来自于古老地壳沉积物质再循环;流纹岩则具有A2型花岗岩的特征,形成于后碰撞伸展环境,且源岩(浆)来自于深部地壳物质部分熔融。这2套岩石的形成表明,北山造山带在890~870 Ma经历了板块碰撞-后碰撞的构造转换过程。约890 Ma之前的板块碰撞代表了对罗迪尼亚(Rodinia)超大陆汇聚的响应,约870 Ma的伸展则代表了古亚洲洋在该区域内开始孕育,且这次伸展作用可能与罗迪尼亚超大陆裂解有关。

  • 加载中
  • 图 1  中亚造山带构造位置(a)和北山造山带地质构造简图(b)(据参考文献[4])

    Figure 1. 

    图 2  北山造山带双尖山—黄毛土沟地区岩浆岩分布图和似斑状黑云二长花岗岩、流纹岩剖面图

    Figure 2. 

    图 3  似斑状黑云二长花岗岩野外露头、手标本和镜下照片

    Figure 3. 

    图 4  流纹岩野外露头、手标本和显微特征照片

    Figure 4. 

    图 5  主量元素组成图解

    Figure 5. 

    图 6  岩浆系列组成图

    Figure 6. 

    图 7  稀土元素球粒陨石标准化分布图(a)和微量元素原始地幔标准化蛛网图(b)(球粒陨石及原始地幔标准化数据据参考文献[27])

    Figure 7. 

    图 8  似斑状黑云二长花岗岩锆石阴极发光(CL)图像(a)和U-Pb谐和图(b)

    Figure 8. 

    图 9  流纹岩锆石阴极发光(CL)图像(a)和U-Pb谐和图(b)

    Figure 9. 

    图 10  岩石系列判别图解

    Figure 10. 

    图 11  似斑状黑云二长花岗岩源岩判别图解

    Figure 11. 

    图 12  花岗岩构造环境判别图

    Figure 12. 

    图 13  北山造山带(地块)新元古代构造演化模式图

    Figure 13. 

    表 1  全岩主量、微量和稀土元素组成

    Table 1.  The analytical results of major, trace and rare earth elements

    元素 似斑状黑云二长花岗岩 流纹岩
    YQ8829 YQ8830 YQ8837 YQ8840 PM306YQ2 PM206YQ31 YQ9905
    SiO2 72.02 68.32 70.41 71.21 72.43 73.38 71.96
    TiO2 0.38 0.67 0.55 0.5 0.4 0.4 0.44
    Al2O3 13.79 14.25 14.25 13.81 13.47 12.17 13.52
    Fe2O3 0.71 1.72 1.48 1.31 1.06 1.16 1.37
    FeO 1.85 2.82 1.95 2.06 1.39 1.98 1.52
    MnO 0.05 0.04 0.04 0.05 0.02 0.03 0.03
    MgO 0.97 2.1 1.11 1.02 0.94 1.26 1.38
    CaO 1.23 1.48 1.3 1.89 0.55 0.33 0.54
    Na2O 3.63 2.19 2.48 2.98 3.72 2.51 2.97
    K2O 4.02 4.54 5.23 3.97 5.16 5.36 4.87
    P2O5 0.07 0.11 0.06 0.12 0.11 0.11 0.1
    H2O+ 0.77 1.14 0.77 0.68 0.26 0.86 0.8
    H2O- 0.32 0.26 0.08 0.09 0.13 0.24 0.07
    烧失量 1.15 1.63 1.01 0.98 0.61 1.19 1.19
    TFeO 2.49 4.36 3.28 3.24 2.34 3.02 2.75
    TFeO/MgO 2.56 2.08 2.95 3.17 2.49 2.4 1.99
    A/NK 1.34 1.67 1.46 1.5 1.15 1.23 1.33
    A/CNK 1.11 1.29 1.19 1.11 1.08 1.18 1.23
    K2O/Na2O 1.11 2.07 2.11 1.33 1.39 2.14 1.64
    K2O+Na2O 7.65 6.73 7.71 6.95 8.88 7.87 7.84
    (K2O+Na2O)/CaO 6.22 4.55 5.93 3.68 16.15 23.85 14.52
    AR 2.87 1.77 1.94 2.22 3.26 2.34 2.46
    σ43 2.01 1.77 2.16 1.7 2.67 2.03 2.11
    R1 2570 2695 2561 2737 2274 2736 2587
    R2 459 555 482 532 376 345 400
    10000Ga/Al 2.36 2.78 3.42 2.84 2.55 1.87 2.6
    Cs 4.66 6.15 9.96 6.64 1.51 4.77 3.16
    Rb 126 159 295 186 106 112 154
    Sr 146 149 119 148 62.8 72.2 55.5
    Ba 504 664 619 366 903 794 663
    Ga 16.3 19.8 24.4 19.6 17.2 11.4 17.6
    Nb 8.86 16.2 21.4 14.5 16.1 13.2 14.8
    Ta 0.97 1.23 2.35 1.3 1.37 1.17 1.26
    Zr 153 238 305 211 225 186 214
    Hf 5.37 8.24 10.2 7.24 7.06 6.33 6.95
    Th 18.8 19.5 48.9 25.4 24 21.3 22.8
    V 39 71.3 53.4 41 24.3 24.7 29.3
    Cr 20 38.2 19.2 15.3 10.5 17.5 15.9
    Co 5.36 10.5 5.97 6.24 4.19 8.68 6.18
    Ni 4.9 15.4 6.94 4.64 3.69 4.02 5.26
    Li 17.3 16.7 17.2
    Sc 6.78 8.86 8.83 9.76 5.54 5.97 7.43
    U 2.08 1.82 6.67 3.27 5.4 3.86 3.78
    La 29.5 39 65.8 44.4 35.5 36.1 33.2
    Ce 65 79.1 131 88.9 75.1 62.8 69.3
    Pr 7.19 10.3 15.4 10.4 8.9 8.58 8.33
    Nd 25.9 38.6 59.9 40.8 35.9 30.6 34.5
    Sm 5.09 7.43 11.5 7.91 7.37 6.36 6.91
    Eu 0.75 1.13 1.08 0.86 1.02 1.1 0.99
    Gd 4.49 6.67 10.1 7.51 6.82 5.96 6.15
    Tb 0.72 1.06 1.63 1.36 1.31 1.12 1.08
    Dy 4.34 6.34 9.04 9 8.51 7.41 6.55
    Ho 0.87 1.21 1.58 1.77 1.59 1.47 1.23
    Er 2.82 3.55 4.55 5.54 4.65 4.38 3.72
    Tm 0.51 0.58 0.82 1.03 0.83 0.7 0.68
    Yb 3.25 3.56 4.37 5.49 4.42 4.23 3.89
    Lu 0.53 0.55 0.68 0.84 0.67 0.66 0.6
    Y 23.9 32.7 45 47.9 41.1 45 32
    ∑REE 174.78 231.82 362.78 273.74 233.81 216.43 209.16
    LREE 133.39 175.64 284.99 193.34 163.89 145.51 153.28
    HREE 41.39 56.18 77.79 80.4 69.92 70.92 55.87
    LREE/HREE 3.22 3.13 3.66 2.4 2.34 2.05 2.74
    δ Eu 0.47 0.48 0.3 0.34 5.77 6.13 6.12
    (La/Yb)N 6.5 7.86 10.79 5.81 3.11 3.66 3.1
    (La/Sm) N 3.74 3.39 3.69 3.63 1.28 1.17 1.31
    (Gd/Yb)N 1.14 1.55 1.91 1.13 1.28 1.17 1.31
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6。A/NK=(Al2O3/101.96)/((Na2O/61.98)+(K2O/94.20)); A/CNK=(Al2O3/101.96)/((CaO/56.08)+(Na2O/61.98)+(K2O/94.20)); AR=(Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O); σ43=(Na2O+K2O)2/(SiO2-43); R1=(4(SiO2/60.08)-11((Na2O/61.98)+(K2O/94.20))-2(Fe+Ti)×1000;R2=(6(CaO/56.08)+2(MgO/40.31)+Al2O3/101.96)×1000。所有化学成分单位为%
    下载: 导出CSV

    表 2  锆石U-Th-Pb年龄数据

    Table 2.  U-Th-Pb data of zircons

    测点号 Th/10-6 U/10-6 Th/U 同位素比值 年龄/Ma
    206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    似斑状黑云二长花岗岩TW8829
    1 77 796 0.0967 0.1469 0.0015 1.398 0.022 0.0690 0.0009 884 9 888 14 900 26
    2 377 1212 0.3111 0.1480 0.0017 1.413 0.023 0.0693 0.0009 890 10 894 14 907 26
    3 380 682 0.5572 0.2373 0.0025 2.926 0.046 0.0894 0.0011 1373 15 1389 22 1414 24
    4 244 753 0.3240 0.1487 0.0016 1.404 0.023 0.0685 0.0009 894 10 890 15 882 26
    5 56 388 0.1443 0.1509 0.0016 1.420 0.022 0.0682 0.0009 906 10 897 14 876 26
    6 222 1197 0.1855 0.1500 0.0016 1.474 0.023 0.0712 0.0009 901 10 920 15 964 26
    7 201 1724 0.1166 0.1505 0.0017 1.411 0.024 0.0680 0.0009 904 10 893 15 867 26
    8 245 1818 0.1348 0.1482 0.0018 1.418 0.023 0.0694 0.0009 891 11 897 15 910 26
    9 203 635 0.3197 0.1481 0.0015 1.400 0.022 0.0686 0.0009 891 9 889 14 885 26
    10 174 712 0.2444 0.1504 0.0019 1.478 0.023 0.0713 0.0009 903 11 921 14 966 27
    11 108 558 0.1935 0.1374 0.0014 1.430 0.022 0.0755 0.0010 830 8 902 14 1082 27
    12 234 759 0.3083 0.1753 0.0018 2.043 0.031 0.0845 0.0011 1041 11 1130 17 1305 25
    13 235 1158 0.2029 0.2168 0.0027 2.573 0.044 0.0861 0.0011 1265 16 1293 22 1340 24
    14 607 1748 0.3473 0.2056 0.0021 2.412 0.037 0.0851 0.0011 1205 12 1246 19 1317 24
    15 69 520 0.1327 0.1492 0.0016 1.469 0.023 0.0714 0.0009 896 9 918 14 970 26
    16 330 1543 0.2139 0.1487 0.0017 1.444 0.023 0.0704 0.0009 894 10 907 15 941 26
    17 599 1700 0.3524 0.1309 0.0016 1.376 0.022 0.0763 0.0010 793 9 879 14 1102 26
    18 249 889 0.2801 0.1458 0.0018 1.420 0.024 0.0707 0.0009 877 11 898 15 948 26
    19 223 875 0.2549 0.1448 0.0015 1.363 0.021 0.0683 0.0008 872 9 873 13 877 26
    20 70 498 0.1406 0.1491 0.0015 1.386 0.021 0.0674 0.0008 896 9 883 14 850 26
    流纹岩Pm206TW31
    1 55 207 0.2657 0.1633 0.0017 1.716 0.028 0.0762 0.0010 975 10 1015 16 1101 26
    2 141 389 0.3625 0.1451 0.0015 1.364 0.021 0.0681 0.0009 874 9 873 13 873 26
    3 54 184 0.2935 0.1451 0.0015 1.373 0.022 0.0686 0.0009 874 9 878 14 888 28
    4 89 275 0.3236 0.1436 0.0015 1.379 0.021 0.0697 0.0009 865 9 880 14 919 26
    5 115 329 0.3495 0.1441 0.0015 1.351 0.021 0.0680 0.0009 868 9 868 13 868 26
    6 81 483 0.1677 0.1436 0.0015 1.362 0.021 0.0688 0.0009 865 9 873 13 892 26
    7 830 794 1.0453 0.1071 0.0011 0.948 0.015 0.0643 0.0008 656 7 677 10 750 27
    8 147 286 0.5140 0.1445 0.0015 1.354 0.021 0.0680 0.0009 870 9 869 14 868 27
    9 109 421 0.2589 0.1451 0.0015 1.389 0.022 0.0694 0.0009 873 9 884 14 912 26
    10 126 208 0.6058 0.1444 0.0015 1.362 0.022 0.0684 0.0009 869 9 873 14 881 28
    11 139 413 0.3366 0.1440 0.0015 1.382 0.021 0.0696 0.0009 867 9 881 14 916 26
    12 128 392 0.3265 0.1449 0.0015 1.352 0.021 0.0677 0.0008 873 9 868 13 858 26
    13 386 203 1.9015 0.1242 0.0013 1.303 0.023 0.0761 0.0011 754 8 847 15 1098 30
    14 48 389 0.1234 0.1443 0.0016 1.354 0.022 0.0680 0.0009 869 10 869 14 870 26
    15 104 378 0.2751 0.1428 0.0014 1.342 0.020 0.0682 0.0009 861 9 864 13 874 26
    16 68 263 0.2586 0.1438 0.0016 1.360 0.022 0.0686 0.0009 866 9 872 14 886 27
    17 98 204 0.4804 0.1520 0.0015 1.465 0.023 0.0699 0.0009 912 9 916 15 926 28
    18 93 185 0.5027 0.1487 0.0016 1.417 0.024 0.0691 0.0009 893 10 896 15 902 28
    19 83 398 0.2085 0.1446 0.0016 1.365 0.022 0.0684 0.0009 871 9 874 14 881 26
    20 85 564 0.1507 0.1452 0.0016 1.367 0.022 0.0683 0.0009 874 10 875 14 876 26
    下载: 导出CSV

    表 3  北山造山带及周缘新元古代花岗岩年龄统计

    Table 3.  Dating statistics of Neoproterozoic granites in the Beishan orogenic belt and its periphery

    位置 岩性 测试方法 年龄/Ma 参考文献
    北山旧井 片麻状花岗岩 LA-ICP-MS 1450~1401 [73]
    北山旧井 黑云斜长片麻岩和花岗闪长岩 LA-ICP-MS 1408±4 [74]
    北山古堡泉 片麻状花岗岩 LA-ICP-MS 933±2 [44]
    北山柳红柳园 花岗质片麻岩 LA-ICP-MS 902±5 [75]
    北山黄牛山 糜棱岩化花岗岩,花岗片麻岩 LA-ICP-MS 895、894、884 [24]
    北山哈珠 片麻状花岗岩 LA-ICP-MS 885±4 [42]
    北山柳红柳园-古堡泉 花岗片麻岩 单颗锆石U-Pb 880±31 [76]
    北山白墩子-石板墩 片麻状花岗岩 LA-ICP-MS 881~882 [41]
    北山小黄山 片麻状花岗岩 LA-ICP-MS 713±6 [3]
    东天山大白石头南 片麻状花岗岩 LA-ICP-MS 922.7±7.9 [77]
    东天山星星峡 片麻状花岗岩 SHRIMP 942±7 [78]
    塔里木盆地北缘 二云斜长片麻岩 LA-ICP-MS 822±7 [79]
    阿尔金环形山 二长花岗片麻岩 LA-ICP-MS 928±9 [80]
    中祁连山东段 花岗岩 单颗锆石U-Pb 917±12 [81]
    昆中断裂带两侧 花岗片麻岩 锆石U-Pb 900 [82]
    下载: 导出CSV
  • [1]

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    [2]

    Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 2011, 310(10): 1553-1594. http://adsabs.harvard.edu/abs/2010AmJS..310.1553X

    [3]

    Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology[J]. Gondwana Research, 2016, 30: 224-235. doi: 10.1016/j.gr.2015.03.004

    [4]

    Song D F, Xiao W J, Windley B F, et al. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt[J]. Lithos, 2015, 224: 195-213. http://www.sciencedirect.com/science/article/pii/S0024493715000894

    [5]

    杨合群, 李英, 杨建国, 等. 北山造山带的基本成矿特征[J]. 西北地质, 2006, 2: 78-95. doi: 10.3969/j.issn.1009-6248.2006.02.005

    [6]

    Sengör A M C, Natalin B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. doi: 10.1038/364299a0

    [7]

    Jahn B M, Windley B, Natal'in B, et al. Phanerozoic continental growth in central Asia-Preface[J]. Journal of Asian Earth Sciences, 2004, 23(5): 599-603. doi: 10.1016/S1367-9120(03)00124-X

    [8]

    许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101002.htm

    [9]

    李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 34(8): 2201-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808001.htm

    [10]

    Wan B, Li S H, Xiao W J, et al. Where and when did the Paleo-Asian ocean form?[J]. Precambrian Research, 2018, 317: 241-252. doi: 10.1016/j.precamres.2018.09.003

    [11]

    Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. doi: 10.2475/ajs.304.4.370

    [12]

    Xia L Q. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195-212. doi: 10.1016/j.earscirev.2014.09.006

    [13]

    Liu Q, Zhao G C, Han Y G, et al. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 2017, 274: 19-30. http://www.sciencedirect.com/science/article/pii/S0024493716304649

    [14]

    陈方宇, 王波, 李海泉, 等. 内蒙古锡林浩特博仁敖包-巴彦门德过铝质岩的锆石U-Pb年代学、地球化学及其构造意义[J]. 矿产勘查, 2019, 10(4): 768-780. doi: 10.3969/j.issn.1674-7801.2019.04.008

    [15]

    Dobretsov N L, Buslov M M, Vernikovsky V A. Neoproterozoic to Early Ordovician evolution of the Paleo-Asian Ocean: Implications to the break-up of Rodinia[J]. Gondwana Research, 2003, 6(2): 143-159. doi: 10.1016/S1342-937X(05)70966-7

    [16]

    陆松年, 李怀坤, 陈志宏, 等. 新元古时期中国古大陆与罗迪尼亚超大陆的关系[J]. 地学前缘, 2004, 11(2): 515-523. doi: 10.3321/j.issn:1005-2321.2004.02.021

    [17]

    李献华, 李武显, 何斌. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验[J]. 矿物岩石地球化学通报, 2012, 31(6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002

    [18]

    Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222: 13-54.

    [19]

    张克信, 徐亚东, 何卫红, 等. 中国新元古代青白口纪早期(1000~820Ma)洋陆分布[J]. 地球科学, 2018, 43(11): 3837-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201811004.htm

    [20]

    Liu H C, Zi J W, Cawood P A, et al. Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents[J]. Precambrian Research, 2020, 337: 105558. Doi:10.1016/j.precamres.2019.105558.

    [21]

    徐夕生, 王孝磊, 赵凯, 等. 新时期花岗岩研究的进展和趋势[J]. 矿物岩石地球化学通报, 2020, 39(5): 899-911. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202005002.htm

    [22]

    左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990, 10(4): 305-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199004000.htm

    [23]

    Zong K Q, Chen J Y, Hu Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China-Earth Sciences, 2015, 58(10): 1731-1740. doi: 10.1007/s11430-015-5154-y

    [24]

    Wang B R, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Precambrian Research, 2021, 352(1): 106016. Doi:10.1016/j.precamres.2020.106016

    [25]

    Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-384. doi: 10.1017/S0016756800058222

    [26]

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033

    [27]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [28]

    Gerdes A, Worner G, Henk A. Post-collisional granite generation and HAT Lp metamorphism by radiogenic heating: the example from the Var·iscan South Bohemian Batholith[J]. Journal of the GeologicaI Society London, 2000, 157: 577-587. doi: 10.1144/jgs.157.3.577

    [29]

    张旗, 王焰, 潘国强, 等. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报, 2008, 24(6): 51-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806004.htm

    [30]

    Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605-626. doi: 10.1016/S0024-4937(98)00085-1

    [31]

    Huppert H E, Sparks R S J. The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust[J]. Journal of Petrology, 1988, 29(3): 599-624. doi: 10.1093/petrology/29.3.599

    [32]

    Bergantz G W. Underplating and Partial Melting: Implications for Melt Generation and Extraction[J]. Science, 1989, 245(4922): 1093-1095. doi: 10.1126/science.245.4922.1093

    [33]

    Takagi T, Orihashi Y, Naito K, et al. Petrology of a mantle-derived rhyolite, Hokkaido, Japan[J]. Chemical Geology, 1999, 160(4): 425-445. doi: 10.1016/S0009-2541(99)00111-4

    [34]

    韩宝福. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 2007, 14(3): 64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006

    [35]

    Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    [36]

    Hofmann A W. Chemical Differentation of the Earth-the Relationship Between Mantle, Continental Crust, and Ocean Crust[J]. Earth And Planetary Science Letters, 1988, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X

    [37]

    Chappell B W, White A J R. I-Type and S-Type Granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 1992, 83: 1-26. http://www.tandfonline.com/servlet/linkout?suffix=CIT0011&dbid=16&doi=10.1080%2F00206814.2017.1377121&key=10.1017%2FS0263593300007720

    [38]

    Chappell B W, White A J R. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8: 173-174.

    [39]

    Loiselle M C, Wones D R. Characteristics of Anorogenic Granites. Geological Society of America[J]. Abstracts with Programs, 1979, 11: 468.

    [40]

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29. http://www.sciencedirect.com/science/article/pii/s0024493706003252

    [41]

    姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949-3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311025.htm

    [42]

    牛文超, 任邦方, 任云伟, 等. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据[J]. 地球科学, 2019, 44(1): 284-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201901022.htm

    [43]

    Zong K, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010

    [44]

    Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the South Beishan Orogenic Belt, southernmost Central Asian Orogenic Belt[J]. Precambrian Research, 2015, 266: 409-424. doi: 10.1016/j.precamres.2015.05.034

    [45]

    Liu Q, Zhao G C, Sun M, et al. Ages and tectonic implications of Neoproterozoic ortho-and paragneisses in the Beishan Orogenic Belt, China[J]. Precambrian Research, 2015, 266: 551-578. doi: 10.1016/j.precamres.2015.05.022

    [46]

    He Z Y, Klemd R, Yan L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2018, 185: 1-14. doi: 10.1016/j.earscirev.2018.05.012

    [47]

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    [48]

    张旗, 金惟俊, 李承东, 等. 再论花岗岩按照Sr-Yb的分类: 标志[J]. 岩石学报, 2010, 26(4): 985-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004002.htm

    [49]

    Rollinson H R. Using geochemical data, evaluation, presentation, interpretation[M]. Longman Scientific and Technical, England, 1993.

    [50]

    Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    [51]

    Altherr R, Siebel W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions To Mineralogy And Petrology, 2002, 143(4): 397-415. doi: 10.1007/s00410-002-0352-y

    [52]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29-44. http://www.sciencedirect.com/science/article/pii/S0024493798000243

    [53]

    Douce A E P. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?[J]. Geology Society, 1999, 168(1): 55-77. doi: 10.1144/GSL.SP.1999.168.01.05

    [54]

    张旗, 金惟俊, 李承东, 等. 三论花岗岩按照Sr-Yb的分类: 应用[J]. 岩石学报, 2010, 26(12): 3431-3455. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012002.htm

    [55]

    张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm

    [56]

    King E M, Valley J W, Davis D W, et al. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source[J]. Precambrian Research, 1998, 92(4): 365-387. doi: 10.1016/S0301-9268(98)00082-5

    [57]

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841-844. doi: 10.1126/science.1110873

    [58]

    Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2): 115-134. http://www.sciencedirect.com/science/article/pii/002449379090043Z

    [59]

    Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X

    [60]

    Kerr A, Fryer B J. Nd isotope evidence for crust mantle interaction in the generation of A-type granitoid suites in Labrador, Canada[J]. Chemical Geology, 1993, 104(1/4): 39-60. http://www.sciencedirect.com/science/article/pii/0009254193901415

    [61]

    Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1/2): 89-106.

    [62]

    Douce A E P. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    [63]

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    [64]

    贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 2009, 33(3): 465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017

    [65]

    Rivers T. Lithotectonic elements of the Grenville Province: review and tectonic implications[J]. Precambrian Research, 1997, 86(3/4): 117-154. http://www.sciencedirect.com/science/article/pii/S0301926897000387

    [66]

    陆松年. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 1998. (5): 489-495. doi: 10.3321/j.issn:0371-5736.1998.05.007

    [67]

    郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报, 2003, 48(16): 1705-1720. doi: 10.3321/j.issn:0023-074X.2003.16.001

    [68]

    Cawood P A. Metamorphic rocks and plate tectonics[J]. Science Bulletin, 2020, 65(12): 968-969. doi: 10.1016/j.scib.2020.02.016

    [69]

    Indares A. Deciphering the metamorphic architecture and magmatic patterns of large hot orogens: Insights from the central Grenville Province[J]. Gondwana Research, 2020, 80: 385-409. doi: 10.1016/j.gr.2019.10.013

    [70]

    彭松柏, 付建明, 刘云华. 大容山-十万大山花岗岩带中A型紫苏花岗岩、麻粒岩包体的发现及意义[J]. 科学技术与工程, 2004, 4(10): 832-834. doi: 10.3969/j.issn.1671-1815.2004.10.006

    [71]

    杨经绥, 史仁灯, 吴才来, 等. 柴达木盆地北缘新元古代蛇绿岩的厘定——罗迪尼亚大陆裂解的证据?[J]. 地质通报, 2004, 23(2/3): 892-898. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z2009.htm

    [72]

    徐佳丽, 周文孝, 赵晓成, 等. 东昆仑诺木洪地区新元古代眼球状花岗片麻岩锆石U-Pb年龄及Hf同位素特征[J]. 矿产勘查, 2020, 11(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202001001.htm

    [73]

    Yuan Y, Zong K Q, Cawood P A, et al. Implication of Mesoproterozoic (similar to 1.4 Ga) magmatism within microcontinents along the southern Central Asian Orogenic Belt[J]. Precambrian Research, 2019, 327: 314-326. doi: 10.1016/j.precamres.2019.03.014

    [74]

    贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 60(4): 389-399. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201504008.htm

    [75]

    叶晓峰, 宗克清, 张泽明, 等. 北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J]. 地质通报, 2013, 32(2): 307-317. doi: 10.3969/j.issn.1671-2552.2013.02.010

    [76]

    梅华林, 李惠民, 陆松年, 等. 甘肃柳园地区花岗质岩石时代及成因[J]. 岩石矿物学杂志, 1999, (1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.002.htm

    [77]

    孟勇, 唐淑兰, 王凯, 等. 东天山大白石头南新元古代片麻状花岗岩锆石U-Pb年代学、岩石地球化学及地质意义[J]. 地球科学, 2018, 43(12): 4427-4442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201812013.htm

    [78]

    胡霭琴, 韦刚健, 张积斌, 等. 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石学报, 2008, 24(12): 2731-2740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200812008.htm

    [79]

    杨鑫, 徐旭辉, 李慧莉, 等. 塔里木北缘新元古代早期构造演化的锆石U-Pb年代学和地球化学约束[J]. 大地构造与成矿学, 2017, 41(2): 381-395. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201702013.htm

    [80]

    王立社, 张巍, 段星星, 等. 阿尔金环形山花岗片麻岩同位素年龄及成因研究[J]. 岩石学报, 2015, 31(1): 119-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501009.htm

    [81]

    郭进京, 赵凤清, 李怀坤. 中祁连东段晋宁期碰撞型花岗岩及其地质意义[J]. 地球学报, 1999, 20(1): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB901.001.htm

    [82]

    Chen Y B, Hu A Q, Zhang G X, et al. Zircon U-Pb age of granitic gneiss on Duku highway in western Tianshan of China and its geological implications[J]. Chinese Science Bulletin, 2000, 45(7): 649-653. doi: 10.1007/BF02886044

    [83]

    Wang J X, Zhang K X, Jin J S, et al. Early Paleozoic Ocean Plate Stratigraphy of the Beishan Orogenic Zone, NW China: Implications for Regional Tectonic Evolution[J]. Acta Geologica Sinica-English Edition, 2020, 94(4): 1042-1059. http://d.wanfangdata.com.cn/periodical/dzxb-e202004011

    [84]

    Wang J X, Zhang K X, Windley B, et al. A mid-Palaeozoic ocean-continent transition in the Mazongshan subduction-accretion complex, Beishan, NW China: new structural, chemical and age data constrain the petrogenesis and tectonic evolution[J]. Geological Magazine, 2020, 157(11): 1877-1897. doi: 10.1017/S0016756820000114

    [85]

    于海峰, 陆松年, 梅华林, 等. 中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义[J]. 岩石学报, 1999, 15(4): 532-538. doi: 10.3321/j.issn:1000-0569.1999.04.005

    [86]

    杨经绥, 吴才来, 陈松永, 等. 甘肃北山地区榴辉岩的变质年龄: 来自锆石的U-Pb同位素定年证据[J]. 中国地质, 2006, 33(2): 317-325. doi: 10.3969/j.issn.1000-3657.2006.02.010

    [87]

    Saktura W M, Buckman S, Nutman A P, et al. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China[J]. Lithos, 2017, 294: 20-38. http://www.sciencedirect.com/science/article/pii/S002449371730347X

    [88]

    Soldner J, Yuan C, Schulmann K, et al. Grenvillean evolution of the Beishan Orogen, NW China: Implications for development of an active Rodinian margin[J]. Geological Society of America Bulletin, 2020, 132(7/8): 1657-1680. http://www.researchgate.net/publication/337776386_Grenvillean_evolution_of_the_Beishan_Orogen_NW_China_Implications_for_development_of_an_active_Rodinian_margin

    [89]

    Wang B R, Yang X S, Li S C, et al. Age, depositional environment, and tectonic significance of an Early Neoproterozoic volcano-sedimentary sequence in the eastern Beishan orogenic belt, southern Central Asian Orogenic Belt[J]. Geological Journal, 2021, 56: 1346-1357. doi: 10.1002/gj.3985

    [90]

    Pearce J A, Harris N B W, Tindle A G. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [91]

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4): 43-55. http://www.sciencedirect.com/science/article/pii/0009254185900348

    [92]

    李小伟, 莫宣学, 赵志丹, 等. 关于A型花岗岩判别过程中若干问题的讨论[J]. 地质通报, 2010, 29(2): 278-285. doi: 10.3969/j.issn.1671-2552.2010.02.012 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2010020312&flag=1

    [93]

    张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 2012, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    [94]

    Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    [95]

    洪大卫, 王式洸, 韩宝福, 等. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 1995, 25(4): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199504012.htm

    [96]

    钱青, 王焰. 不同构造环境中双峰式火山岩的地球化学特征[J]. 地质地球化学, 1999, 27(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199904004.htm

    [97]

    Ao S J, Xiao W J, Han C M, et al. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: implications for the architecture of the Southern Altaids[J]. Geological Magazine, 2012, 149(4): 606-625. doi: 10.1017/S0016756811000884

    [98]

    Song D F, Xiao W J, Han C M, et al. Provenance of metasedimentary rocks from the Beishan orogenic collage, southern Altaids: Constraints from detrital zircon U-Pb and Hf isotopic data[J]. Gondwana Research, 2013, 24(3/4): 1127-1151. http://www.sciencedirect.com/science/article/pii/S1342937X13000579

    [99]

    He Z Y, Zhang Z M, Zong K Q, et al. Paleoproterozoic crustal evolution of the Tarim Craton: Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang[J]. Journal of Asian Earth Sciences, 2013, 78: 54-70. doi: 10.1016/j.jseaes.2013.07.022

    [100]

    Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: A tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113(3/4): 303-341. http://www.sciencedirect.com/science/article/pii/S0012825212000505

  • 加载中

(13)

(3)

计量
  • 文章访问数:  2009
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2020-11-29
修回日期:  2021-05-13
刊出日期:  2021-07-15

目录