S-Pb isotope characteristics and source tracing of ore-forming materials in the Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit, Baoshan block, western Yunnan Province
-
摘要:
滇西金厂河铁铜铅锌多金属矿床位于保山地块北部,是"三江"多金属成矿带内典型矿床之一。对该矿床开展硫铅同位素示踪研究,探讨成矿物质来源,并结合构造背景和成矿时代分析了矿床成矿机制。样品测试结果表明,矿石中硫化物的δ34S值为+2.5‰~+11.1‰,平均值为+5.65‰,硫同位素来源为深部幔源岩浆和岩浆上侵混染壳源物质形成的多种硫源同位素组合;矿石矿物铅同位素组成中206Pb/204Pb为18.167~18.497,207Pb/204Pb为15.668~15.779,208Pb/204Pb为38.554~38.997,铅同位素总体较稳定,显示壳幔混染特征,以上地壳铅为主,可能来源有深部侵入岩浆及赋矿围岩。由矿床成矿物质来源表现出的多源、深源-浅源的特征推测,与成矿有关的中酸性岩体隐伏在区域深部。
Abstract:The Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit in western Yunnan is located in the northern part of Baoshan block, and is one of the typical deposits in the Sanjiang polymetallic metallogenic belt.In this paper, the S-Pb isotope tracer study was carried out to explore the source of ore-forming materials, and the metallogenic mechanism of the deposit was summarized and studied in combination with the tectonic setting and metallogenic age. The results of sample testing show that the value of the δ34S in the ore is +2.5‰~+11.1‰, and the average value is +5.65‰.The S isotope source is a variety of S isotope assemblages formed by deep mantle-derived magma and crust-derived material contaminated by magma.The Pb isotope compositions of ore minerals are 206Pb/204Pb 18.167~18.497, 207Pb/204Pb 15.668~15.779, and 208Pb/204Pb 38.554~38.997.The Pb isotopes are generally stable, indicating that the contamination of crust and mantle was dominated by lead in the upper crust, possibly from deep intrusive magma and ore-bearing Cambrian strata.The deposit characteristics of composite mineral sources show an inferred multi-source, deep source shallow source, and the mineralization of the acidic rock should be buried in the depth.
-
-
图 1 金厂河铁铜铅锌多金属矿床地质图(据参考文献①修改)
Figure 1.
图 2 金厂河铁铜铅锌多金属矿床8号勘探线地质剖面简图(据参考文献①修改)
Figure 2.
图 5 金厂河铁铜铅锌多金属矿硫同位素组成分布图(底图据参考文献[24])
Figure 5.
图 6 金厂河铁铜铅锌多金属矿床铅同位素模式图(底图据参考文献[31])
Figure 6.
图 7 金厂河铁铜铅锌多金属矿床硫化物铅同位素△β-△γ成因分类图解(底图据参考文献[32])
Figure 7.
表 1 金厂河铁铜铅锌多金属矿床硫化物硫同位素组成
Table 1. Sulfide isotope composition of the Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit
样品号 取样位置 岩(矿)石特征 测试矿物 δ34SV-CDT/‰ JCH6-02 ZK4k-7x,深度30 m 矽卡岩化大理岩中浸染状黄铜矿 黄铜矿 9.5 JCH6-24-2 ZK4k-9xx,深度20 m 阳起石矽卡岩中浸染状黄铜矿 黄铜矿 11.1 JCH6-43-1 ZK2k-8xs1,深度100 m 大理岩中浸染状黄铜矿 黄铜矿 5.5 JCH6-45-1-2 ZK3k-11x,深度5 m 大理岩中浸染状黄铜矿 黄铜矿 5.9 JCH6-46-2 ZK3k-11x,深度3 m 大理岩中浸染状闪锌矿 方铅矿 4.8 JCH6-52-1-2 ZK6k-17s,深度45 m 矽卡岩中浸染状闪锌矿、方铅矿 方铅矿 3.0 闪锌矿 4.7 JCH6-52-4 ZK6k-17s,深度37 m 矽卡岩中浸染状闪锌矿、方铅矿 闪锌矿 6.0 JCH6-55 4号斜井6号穿脉 闪锌矿、方铅矿矿石 方铅矿 2.5 闪锌矿 2.9 JCH7-10 1720中段1线 黄铜矿矿石 黄铜矿 5.4 JCH7-11-1 1720中段18线 闪锌矿、方铅矿矿石 闪锌矿 7.9 JCH7-11-2 1720中段18线 闪锌矿、方铅矿矿石 方铅矿 3.5 JCH7-12 1660中段主巷道 黄铜矿矿石 黄铜矿 6.6 JCH7-14 1660中段主巷道 黄铜矿矿石 黄铜矿 5.5 注:由核工业北京地质研究院分析测试中心测试 表 2 金厂河铁铜铅锌多金属矿床硫化物铅同位素组成
Table 2. Lead isotope composition of sulfide in the Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit
样品号 测试矿物 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ JCH6-02 黄铜矿 18.281 0.004 15.777 0.004 38.664 0.009 JCH6-09 磁铁矿 18.268 0.002 15.774 0.001 38.628 0.004 JCH6-22 磁铁矿 18.167 0.002 15.668 0.001 38.644 0.004 JCH6-24-2 黄铜矿 18.497 0.003 15.779 0.002 38.997 0.005 JCH6-46-2 方铅矿 18.278 0.002 15.758 0.001 38.554 0.003 JCH6-52-1-2 方铅矿 18.279 0.002 15.768 0.002 38.605 0.005 JCH6-52-4 闪锌矿 18.267 0.002 15.764 0.002 38.601 0.004 JCH6-55 闪锌矿 18.324 0.002 15.777 0.002 38.638 0.004 注:样品由核工业北京地质研究院分析测试中心测试 表 3 金厂河铁铜铅锌多金属矿床硫化物铅同位素参数
Table 3. Lead isotope parameters of sulfide in the Jinchanghe Fe-Cu-Pb-Zn polymetallic deposit
样品号 样品名称 206Pb/207Pb t/Ma μ ω Th/U V1 V2 △α △β △γ JCH6-02 黄铜矿 1.1587 468.30 9.83 39.90 3.93 86.99 65.06 90.28 31.14 52.60 JCH6-09 磁铁矿 1.1581 473.80 9.83 39.79 3.92 86.20 65.04 89.97 30.98 51.87 JCH6-22 磁铁矿 1.1595 423.10 9.63 39.42 3.96 80.00 54.67 79.70 23.76 49.99 JCH6-24-2 黄铜矿 1.1723 321.40 9.81 40.06 3.95 89.37 64.34 90.86 30.46 54.95 JCH6-46-2 方铅矿 1.1599 448.90 9.79 39.26 3.88 82.71 64.66 88.46 29.78 48.72 JCH6-52-1-2 方铅矿 1.1592 459.50 9.81 39.57 3.90 84.81 64.94 89.41 30.50 50.59 JCH6-52-4 闪锌矿 1.1588 463.30 9.81 39.59 3.91 84.70 64.50 89.02 30.26 50.65 JCH6-55 闪锌矿 1.1614 438.70 9.83 39.53 3.89 85.18 65.90 90.34 30.97 50.54 注:由核工业北京地质研究院分析测试中心测试 -
[1] Hou Z Q, Zaw K, Pan G T, et al.Sanjiang Tethyan metallogenesis in S.W.China:Tectonic setting, metallogenic epochs and deposit types[J].Ore Geology Reviews, 2007, 31(1/4):48-87. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.oregeorev.2004.12.007/
[2] 邓军, 王长明, 李文昌, 等.三江特提斯复合造山与成矿作用研究态势及启示[J].地学前缘, 2014, 21(1):52-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201401006
[3] 侯增谦, 杨岳清, 王海平, 等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 2003:1-345.
[4] 黄华, 张长青, 周云满, 等.云南金厂河铁铜铅锌多金属矿床矽卡岩矿物学特征及蚀变分带[J].岩石矿物学杂志, 2014, 33(1):127-148. doi: 10.3969/j.issn.1000-6524.2014.01.010
[5] 黄华, 张长青, 周云满, 等.云南保山金厂河铁铜铅锌多金属矿床Rb-Sr等时线测年及其地质意义[J].矿床地质, 2014, 33(1):123-136. doi: 10.3969/j.issn.0258-7106.2014.01.008
[6] 黄华.云南金厂河铁铜铅锌多金属矿床地质特征及成矿作用研究[D].中国地质大学(北京)硕士学位论文, 2014: 52-55.
[7] 郑景旭.云南三江地区核桃坪、金厂河矿床成矿流体研究[D].中国地质大学(北京)硕士学位论文, 2017.
[8] 陈福川.西南三江保山地块珑阳矿集区早白垩世矽卡岩矿床成矿作用研究[D].中国地质大学(北京)博士学位论文, 2018.
[9] 李文昌, 莫宣学.西南"三江"地区新生代构造及其成矿作用[J].云南地质, 2001, 20(4):333-346. doi: 10.3969/j.issn.1004-1885.2001.04.001
[10] Ohmoto H.Stable isotope geochemistry of ore deposits[J].Rev.Mineral., 1986, l6(1):491-559. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201801010
[11] 薛传东, 韩润生, 杨海林, 等.滇西北保山核桃坪铅锌矿床成矿流体来源的同位素地球化学证据[J].矿床地质, 2008, 27(2):243-252. doi: 10.3969/j.issn.0258-7106.2008.02.009
[12] 陶琰, 胡瑞忠, 朱飞霖, 等.云南保山核桃坪铅锌矿成矿年龄及动力学背景分析[J].岩石学报.2010.26(6):1760-1772. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006011
[13] 邓必方.保山-镇康地区汞、铅锌矿床的成矿模式[J].云南地质, 1995, 1(4):355-364. http://www.cnki.com.cn/Article/CJFDTotal-YNZD504.011.htm
[14] 夏庆霖, 陈永清, 卢映祥, 等.云南芦子园铅锌矿床地球化学、流体包裹体及稳定同位素特征[J].地球科学, 2005, 30(20):177-186. http://d.old.wanfangdata.com.cn/Periodical/dqkx200502008
[15] 朱余银, 韩润生, 薛传东, 等.云南保山核桃坪铅锌矿床地质特征[J].矿产与地质, 2006, 20(1):32-35. doi: 10.3969/j.issn.1001-5663.2006.01.007
[16] Chen F K, Li X H, Li Q L, et al.Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, south-western China[J].Int.J.Earth Sci., 2007, 96(6):1179-1194. doi: 10.1007/s00531-006-0146-y
[17] Liu S, Hu R Z, Gao S, et al.U-Pb ziron, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan province, SW China[J].Journal of Asian Earth Sciences, 2009, 36:168-182. doi: 10.1016/j.jseaes.2009.05.004
[18] 董美玲, 董国臣, 莫宣学, 等.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J].岩石学报, 2012, 28(5):1453-1464. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205009
[19] Yang F C, Li W C, Liu X L, et al.Zircon U-Pb Ages of the Muchang Alkali Granites in Zhenkang Block, Western Yunnan:Implication for the Time Limit on Tectono-Magmatic Activities[J].Acta Geologica Sinica (English edition), 2019, 93(4):1152-1153. doi: 10.1111/1755-6724.13845
[20] 黄静宁, 陈永清, ZHAI X M, 等.滇西保山地块双脉地晚始新世过铝质花岗岩:锆石SHRIMP U-Pb定年、地球化学和成因[J].中国科学(地球科学), 2011, 41(4):452-467. doi: 10.1007/s11589-011-0776-4
[21] 祝新友, 王京彬, 王艳丽, 等.湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床硫铅同位素地球化学研究[J].岩石学报, 2012, 12:3809-3822. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212003
[22] 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:1-247.
[23] Ohmoto H, Rye R O.Isotopes of sulfur and Carbon[C]//Barnes H L.Geochemistry of Hydrothermal Ore Ddeposits (2nd Edition).New York: John Wiley and Sons, 1979: 509-567.
[24] 韩吟文, 马振东, 张宏飞, 等.地球化学[M].北京:地质出版社, 2003:1-37.
[25] Chaussidon M, Lorand J P.Sulphur isotope composition of orogenic spinel lherzolite massifsfrom Ariege(North-Eastern Pyrenees, France):An ion microprobe study[J].Geochimica Et Cosmochimica Acta, 1990, 54(10):2835-2846. doi: 10.1016/0016-7037(90)90018-G
[26] Hoefs J.Stable Isotope Geochemistry(7th Edition)[M].Berlin:Springer-Verlag, 2015:1-389.
[27] Claypool G E, Holser W T, Kaplan I R, et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J].Chemical Geology, 1980, 28:199-260. doi: 10.1016/0009-2541(80)90047-9
[28] 徐恒, 张苗红, 朱淑桢.梁河锡矿矿床地质特征及成因探讨[J].四川地质学报, 2010, 2:206-209. doi: 10.3969/j.issn.1006-0995.2010.02.019
[29] Shimazaki H, Yamamoto M.Sulfur isotope ratios of the Akatani, Iide and Waga-Sennin skarn deposits, and their beating on mineralizations in the "Green tuff" region Japan[J].Geochemical Society of Japan, 1983, 17(4):197-207. doi: 10.2343/geochemj.17.197
[30] 路远发.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004
[31] Zartman R E, Doe B R.Plumbotectonics-themodel[J].Tecto-nophysics, 1981, 75:135-162. https://www.researchgate.net/profile/Robert_Zartman/publication/222612904_Plumbotectonics-The_model/links/55bd0a8a08aec0e5f444566e.pdf
[32] 朱炳泉, 李献华, 戴橦谟, 等.地球科学中同位素体系理论与应用——兼中国大陆壳幔演化[M].北京:科学出版社, 1998:224-246.
[33] 张理刚.铅同位素地质研究现状及展望[J].地质与勘探, 1992, 28(4):21-28. http://www.cnki.com.cn/Article/CJFDTotal-DZKT199204004.htm
[34] 高子英.云南主要铅锌矿床的铅同位素特征[J].云南地质, 1997, 16(4):359-367. http://www.cnki.com.cn/Article/CJFDTotal-YNZD199704002.htm
[35] 高伟, 叶霖, 程增涛, 等.云南保山核桃坪铅锌矿床同位素地球化学特征[J].矿物学报, 2011, 31(3):578-586. http://d.old.wanfangdata.com.cn/Periodical/kwxb201103037
[36] Li G J, Wang Q F, Huang Y H, et al.Discovery of Hadean-Mesoarchean crustal materials in the northern Sibumasu block and its significance for Gondwana reconstruction[J].Precambrian Research, 2015, 271:118-137. doi: 10.1016/j.precamres.2015.10.003
[37] Li G J, Wang Q F, Huang Y H, et al.Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block:Implications for the Early Paleozoic tectonic evolution along East Gondwana[J].Lithos, 2016, 245:76-92. doi: 10.1016/j.lithos.2015.10.012
[38] Wang C M, Bagas L, Lu Y J, et al.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J].Earth-Science Reviews, 2016, 156:39-65. doi: 10.1016/j.earscirev.2016.02.008
[39] 钟大赉, 等.滇川西部古特提斯造山带[M].北京:科学出版社, 1998:1-231.
[40] 陈福坤, 李秋立, 王秀丽, 等.滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成[J].岩石学报, 2006, 2:439-448. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200602016
[41] 莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘, 2006, 13(6):43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
[42] 范蔚茗, 王岳军, 郭锋, 等.湘赣地区中生代镁铁质岩浆作用与岩石圈伸展[J].地学前缘, 2003, 10(3):159-161. doi: 10.3321/j.issn:1005-2321.2003.03.015
[43] 毛景文, 谢桂青, 李晓峰, 等.大陆动力学演化与成矿研究:历史与现状-兼论华南地区在地质历史演化期间大陆增生与成矿作用[J].矿床地质, 2005, 24(3):193-205. doi: 10.3969/j.issn.0258-7106.2005.03.001
[44] 刘学龙, 李文昌, 张娜, 等.云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J].中国地质, 2016, 1:209-220. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201601015
① 云南黄金矿业集团股份有限公司.云南省保山市隆阳区金厂河锌 多金属矿床详查报告. 2014.
-