The Middle Neoproterozoic meta-gabbro from the North Lhasa terrane of Tibet and its geological implications
-
摘要:
青藏高原各陆块的前寒武纪演化历史及其在冈瓦纳大陆聚合过程中所处的构造位置目前不清楚。通过青藏高原中部北拉萨地块念青唐古拉岩群中变质辉长岩SHRIMP锆石U-Pb定年和锆石Hf同位素组成研究,锆石U-Pb定年结果为663±7Ma,相当于新元古代中期,代表变质辉长岩的原岩形成时代,这是北拉萨地块首次报道该时代的基性岩浆记录。变质辉长岩中锆石具有较低的εHf(t)值(-1.5~+2.3),表明其原岩的岩浆来自富集的地幔源区。结合北拉萨地块已有的变质记录可知,变质辉长岩的原岩可能形成于造山环境。目前定义的"念青唐古拉岩群"实际上是由时代不同、成因不同,甚至来源不同的构造岩片组成,随着工作的深入,有必要对其进行解体。念青唐古拉岩群中的前寒武纪岩浆和变质记录与东非造山带的活动时限较一致,因而北拉萨地块可能与东非造山带具有亲缘性。
-
关键词:
- 北拉萨地块 /
- 念青唐古拉岩群 /
- 变质辉长岩 /
- SHRIMP锆石U-Pb定年 /
- 东非造山带
Abstract:The Precambrian evolution of the ancient terranes in the Tibetan Plateau and their roles in the assembly of Gondwana supercontinent remain unclear. This paper reports SHRIMP zircon U-Pb dating and zircon Hf isotopic analysis data of the meta-gabbro from the Nyainqentanglha Group of North Lhasa terrane, Tibet. Zircon U-Pb dating yielded a weighted mean age of 663±7Ma, which represents the crystallization age of the protolith of meta-gabbro and is reported for the first time for the North Lhasa terrane. The meta-gabbro has low εHf(t) values (-1.5 to +2.3), suggesting an enriched magma source. Considering previous Precambrian studies in the North Lhasa terrane, the authors hold that the meta-gabbros were probably formed in an orogenic setting. The Nyainqentanglha Group is actually composed of a suite of tectonic slices with different sizes, ages, and petrogenesises. Thus, it should be disassembled in the future research. The metamorphic and magmatic records in the Nyainqentanglha Group are comparable with those of the East African orogen, suggesting that the North Lhasa terrane probably originated from the northern segment of the East African orogen during the assembly of Gondwana supercontinent.
-
表 1 北拉萨地块新元古代中期变质辉长岩SHRIMP锆石U-Th-Pb分析结果
Table 1. SHRIMP zircon U-Th-Pb data of the Middle Neoproterozoic meta-gabbros from the North Lhasa terrane, Tibet
点号 206Pbc/% U/10-6 Th/10-6 232Th/238U 206Pb*10-6 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U年龄/Ma 1.1 -- 504 204 0.42 47.0 0.0648 2.2 0.972 3.2 0.1088 2.4 666 ±15 2.1 0.26 521 204 0.40 49.0 0.0611 1.9 0.92 3 0.1092 2.4 668 ±15 3.1 0.17 461 138 0.31 40.9 0.0624 1.7 0.888 2.9 0.1032 2.4 633 ±14 4.1 0.10 410 142 0.36 39.5 0.0627 1.7 0.968 2.9 0.112 2.4 684 ±15 5.1 0.39 405 128 0.33 36.3 0.0593 2.1 0.848 3.2 0.1038 2.4 637 ±14 6.1 0.33 468 148 0.33 40.8 0.0619 2 0.863 3.1 0.1012 2.4 621 ±14 7.1 -- 495 134 0.28 44.7 0.0635 1.6 0.921 2.9 0.1052 2.4 645 ±15 8.1 0.09 582 237 0.42 56.7 0.0614 1.3 0.959 2.7 0.1132 2.3 691 ±15 9.1 -- 557 236 0.44 53.5 0.06129 1.1 0.945 2.5 0.1119 2.3 684 ±15 10.1 0.16 553 204 0.38 52.1 0.064 1.9 0.97 3 0.1099 2.3 672 ±15 11.1 0.13 1623 168 0.11 151 0.0608 0.94 0.904 2.5 0.1079 2.3 661 ±14 12.1 0.79 496 180 0.37 45.6 0.0605 3 0.899 3.8 0.1077 2.3 660 ±15 13.1 1.17 479 184 0.40 44.8 0.0594 3.1 0.902 3.9 0.1102 2.3 674 ±15 14.1 0.52 561 209 0.38 54.7 0.061 1.8 0.959 2.9 0.1141 2.3 696 ±15 15.1 0.54 540 200 0.38 49.6 0.0591 2.5 0.875 3.4 0.1074 2.3 658 ±14 16.1 0.59 515 205 0.41 48.6 0.0588 5.6 0.896 6.1 0.1105 2.3 676 ±15 表 2 北拉萨地块新元古代中期变质辉长岩锆石Hf同位素分析结果
Table 2. Hf isotopic data of zircon of the Middle Neoproterozoic meta-gabbros from the North Lhasa terrane, Tibet
点号 年龄/Ma 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2s 176Hf/177Hfi εHf(0) εHf(t) 2σ TDM /Ma TDMC /Ma fLu/Hf 1.1 666 0.001565 0.000013 0.000059 0.000001 0.282422 0.000030 0.282421 -12.4 2.3 1.1 1145 1449 -1.00 2.1 668 0.001423 0.000011 0.000063 0.000000 0.282377 0.000020 0.282376 -14.0 0.7 0.7 1208 1550 -1.00 3.1 633 0.000419 0.000011 0.000015 0.000000 0.282391 0.000017 0.282391 -13.5 0.5 0.6 1186 1538 -1.00 4.1 684 0.000449 0.000032 0.000019 0.000002 0.282338 0.000018 0.282338 -15.4 -0.3 0.6 1259 1625 -1.00 5.1 637 0.000464 0.000006 0.000018 0.000000 0.282349 0.000016 0.282349 -14.9 -0.9 0.6 1244 1629 -1.00 6.1 621 0.003762 0.000184 0.000158 0.000007 0.282348 0.000020 0.282346 -15.0 -1.4 0.7 1250 1646 -1.00 7.1 645 0.001646 0.000054 0.000074 0.000002 0.282344 0.000018 0.282343 -15.2 -1.0 0.6 1253 1639 -1.00 8.1 691 0.000934 0.000015 0.000035 0.000001 0.282401 0.000022 0.282401 -13.1 2.1 0.8 1173 1479 -1.00 9.1 684 0.001658 0.000022 0.000078 0.000001 0.282369 0.000020 0.282368 -14.3 0.8 0.7 1219 1558 -1.00 10.1 672 0.002666 0.000188 0.000115 0.000008 0.282369 0.000016 0.282367 -14.3 0.5 0.6 1221 1567 -1.00 12.1 660 0.002276 0.000042 0.000096 0.000002 0.282325 0.000015 0.282324 -15.8 -1.3 0.5 1279 1671 -1.00 13.1 674 0.001705 0.000010 0.000064 0.000000 0.282388 0.000021 0.282387 -13.6 1.3 0.8 1192 1520 -1.00 15.1 658 0.011370 0.000981 0.000486 0.000040 0.282326 0.000018 0.282320 -15.8 -1.5 0.6 1292 1682 -0.99 -
[1] Meert J G. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 2003, 362(1/4):1-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ029309034
[2] 李才, 吴彦旺, 王明, 等.青藏高原泛非-早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非造山不整合的发现[J].地质通报, 2010, 29(12):1733-1736. doi: 10.3969/j.issn.1671-2552.2010.12.001 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20101201&flag=1
[3] Hu P Y, Li C, Wang M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Sciences, 2013, 77(21):91-107. http://cn.bing.com/academic/profile?id=c2e3547d99311c09d327be333231573f&encoded=0&v=paper_preview&mkt=zh-cn
[4] Wang X X, Zhang J J, Santosh M, et al. Andean-type orogeny in the Himalayas of south Tibet:Implications for early Paleozoic tectonics alongtheIndianmarginofGondwana[J].Lithos, 2012, 154(4):248-262. http://www.sciencedirect.com/science/article/pii/S002449371200285X
[5] Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328(11):290-308. http://cn.bing.com/academic/profile?id=aafc0264bf3633bd3ed640019fd13753&encoded=0&v=paper_preview&mkt=zh-cn
[6] Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet:Implications for the early Paleozoic tectonic evolution along the Gondwanan protoTethyan margin[J]. Lithos, 2015, 220/223:318-338. doi: 10.1016/j.lithos.2014.12.020
[7] 张修政, 董永胜, 李才, 等.青藏高原拉萨地块北部新元古代中期蛇绿混杂岩带的厘定及其意义[J].岩石学报, 2013, 29(2):698-722. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302023
[8] Hu D G, Wu Z H, Jiang W, et al. SHRIMP zircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet[J]. Science China Series D(Earth Science), 2005, 48(9):1377-1386. doi: 10.1360/04yd0183
[9] Zhang Z M, Dong X, Liu F, et al. The making of Gondwana:Discovery of 650Ma HP granulites from the North Lhasa, Tibet[J]. Precambrian Research, 2012, 212/213(8):107-116. http://www.sciencedirect.com/science/article/pii/S0301926812001143
[10] 胡培远, 翟庆国, 唐跃, 等.青藏高原拉萨地块新元古代(~925Ma)变质辉长岩的确立及其地质意义[J].科学通报, 2016, 61(19):2176-2186. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB201619010&dbname=CJFD&dbcode=CJFQ
[11] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211
[12] 李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 54(1):105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012
[13] Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:a new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences, 2009, 34(1):76-89. doi: 10.1016/j.jseaes.2008.04.001
[14] Dong X, Zhang Z M, Santosh M, et al. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet:zircon chronology and tectonic implications[J]. Journal of Geodynamics, 2011, 52(5):389-405. doi: 10.1016/j.jog.2011.05.002
[15] Compston W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1984, 89(S02):525-534. doi: 10.1029/JB089iS02p0B525
[16] Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides[J]. Contributions to Mineralogy and Petrology, 1987, 97(2):196-204. doi: 10.1007/BF00371239
[17] Ludwig K R. Users'Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronological Center, Special Publication, 2003.
[18] Wu F Y, Yang J H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 2006, 234(1/2):105-126. http://cn.bing.com/academic/profile?id=24086f166a5d00f31562408bac3ae1f4&encoded=0&v=paper_preview&mkt=zh-cn
[19] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[20] 李璞.西藏东部地质的初步认识[J].科学通报, 1955, 7:62-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004315500
[21] 潘晓萍, 李荣社, 王超, 等.西藏冈底斯北缘尼玛地区帮勒村一带寒武纪火山岩LA-ICP-MS锆石U-Pb年龄及其地球化学特征[J].地质通报, 2012, 31(1):63-74. doi: 10.3969/j.issn.1671-2552.2012.01.007 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20120107&flag=1
[22] Ding H X, Zhang Z M, Dong X, et al. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet:Evidence for Andeantype magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(4):1616-1629. doi: 10.1016/j.gr.2014.02.003
[23] 胡道功, 吴珍汉, 叶培盛, 等.西藏念青唐古拉山闪长质片麻岩锆石U-Pb年龄[J].地质通报, 2003, 22(11):936-940. doi: 10.3969/j.issn.1671-2552.2003.11.017 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2003011177&flag=1
[24] 西藏地质矿产局.西藏自治区区域地质志[M].北京:地质出版社, 1993.
[25] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2):241-255. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.epsl.2010.11.005/
[26] Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8):727-730. doi: 10.1130/G31895.1
[27] Jacobs J, Thomas R J. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East African-Antarctic orogen[J]. Geology, 2004, 32(8):721-724. doi: 10.1130/G20516.1