Research on formation mechanism of the Huangcaoping landslide in the Batang fault, western Sichuan
-
摘要:
青藏高原东缘巴塘断裂带内地震滑坡大量发育,部分保存有堵江证据,是该区历史构造活动的良好地质载体。以川西地区巴塘县黄草坪滑坡为研究对象,通过遥感解译、现场调查、地质时代测年、工程地质分析等方法,对滑坡发育特征和形成演化过程进行研究。结果表明:①黄草坪滑坡为巴塘断裂带内全新世大型岩质滑坡,发育于中—下寒武统灰岩和板岩中,体积为142.5×104~237.5×104 m3,历史上曾堰塞巴曲,现今残留滑坡坝、湖相沉积物等滑坡堵江证据;②滑坡堰塞湖形成于约7.75 ka B.P.,滑坡坝在约1.07 ka B.P.之后发生溃决,堰塞湖存续时间大于6.68 ka;③黄草坪滑坡由降雨、冰川和冻融作用直接诱发形成的可能性较小,巴塘断裂带剧烈活动引起的强烈地震可能是直接诱因,在强震作用下坡脚处断层附近的板岩首先发生剪切破坏,上部灰岩结构面劣化并形成贯通滑面,滑体整体启动并高速下滑堵塞巴曲形成堰塞湖。该研究成果不仅可以为区内类似地震滑坡的形成机制分析提供参考,同时佐证了巴塘断裂带为全新世活动断裂带,对分析巴塘断裂带活动性与完善重建区域构造活动历史具有重要意义。
Abstract:There are a large number of landslides triggered by the earthquake in the Batang fault zone on the eastern margin of the Qinghai-Tibet Plateau, and some evidence of blocking the river are preserved. It is a good geological case for studying historical tectonic activities in the study area. This paper takes the Huangcaoping landslide in Batang County as a case, to study the development characteristics, formation, and evolution process of the landslide through remote sensing interpretation, ground investigation, geological dating, and engineering geological analysis. The study results are listed as follows: (1) The Huangcaoping landslide is a huge Holocene rock landslide in the Batang fault zone, developing in limestone and slate of the Middle-Lower Cambrian strata, with a volume of 142.5×104~237.5×104 m3. That the Baqu river has been blocked in history is proved by the evidence of the landslide dam and lacustrine sediments. (2) The Huangcaoping landslide was formed in about 7.75 ka B.P., the landslide dam failure was about in 1.07 ka B.P. from now, and the dammed lake had preserved more than 6.68 ka. (3) The Huangcaoping landslide is unlikely to be directly induced by rainfall, glaciers, and freeze-thaw. A strong earthquake caused by the violent activities of the Batang fault zone could be the direct triggering factor. Under the action of a strong earthquake, the slate near the fault at the toe of the slope is broken first. The upper limestone structural deteriorates and the sliding surface was formed. The sliding mass started as a whole and slid at a high speed to block the Baqu river. The study results can not only provide a reference for the analysis of the formation mechanism of similar landslides triggered by the earthquake in this region but also prove that the Batang fault zone is a Holocene active fault zone, which is of great significance for analyzing the activity of the Batang fault and improving the reconstruction of regional tectonic activity history.
-
Key words:
- seismic landslide /
- development characteristics /
- geologic age /
- formation mechanism /
- Batang fault
-
-
图 4 黄草坪滑坡a-a’地质剖面(剖面位置见图 3)
Figure 4.
表 1 光释光(OSL)样品剂量率及年龄测定结果
Table 1. Dose rate and OSL dating results of samples
样品编号 深度/m U相对含量/10-6 Th相对含量/10-6 K相对含量/% 含水率/% 环境剂量率/(Gy/ka) 等效剂量/Gy 年龄/ka B20-13 1.8 2.19±0.06 13.3±0.07 1.75±0.01 1.28 3.4±0.14 3.62±0.14 1.07±0.06 B20-14 3.4 2.52±0.06 11.7±0.07 1.89±0.01 5.27 3.31±0.13 19.62±1.22 5.93±0.44 注:该OSL样品由中国地震局地壳应力研究所测试 -
[1] 陈剑, 崔之久, 陈瑞琛, 等. 金沙江上游特米古滑坡堰塞湖成因与演化[J]. 地学前缘, 2021, 28(2): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102008.htm
[2] 王家柱, 任光明, 葛华. 金沙江上游某特大型滑坡发育特征及堵江机制[J]. 长江科学院院报, 2019, 36(2): 46-51, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902011.htm
[3] 陈松, 陈剑, 刘超. 金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积物粒度分维特征分析[J]. 中国地质灾害与防治学报, 2016, 27(2): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201602012.htm
[4] 王鹏飞. 金沙江上游苏洼龙滑坡形成机制与稳定性研究[D]. 中国地质大学(北京)硕士学位论文, 2015.
[5] 杨志华, 吴瑞安, 郭长宝, 等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J/OL]. 中国地质, 2021. http://kns.cnki.net/kcms/detail/11.1167.P.20210111.1514.010.html.
[6] 徐则民, 刘文连, 黄润秋. 金沙江寨子村巨型古滑坡的工程地质特征及其发生机制[J]. 岩石力学与工程学报, 2011, 30(S2): 3539-3550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2025.htm
[7] Chen J, Dai F C, Lv T Y, et al. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013, 298: 107-113. doi: 10.1016/j.quaint.2012.09.018
[8] Guo C B, Zhang Y S, David R M, et al. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China?[J]. Geomorphology, 2016, 259: 145-154. doi: 10.1016/j.geomorph.2016.02.013
[9] 徐锡伟, 张培震, 闻学泽, 等. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 2005, 27(3): 446-461. doi: 10.3969/j.issn.0253-4967.2005.03.010
[10] 周荣军, 陈国星, 李勇, 等. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 2005, 27(1): 31-43. doi: 10.3969/j.issn.0253-4967.2005.01.004
[11] 徐锡伟, 闻学泽, 于贵华, 等. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学(D辑), 2005, 35(6): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506006.htm
[12] 程佳. 川西地区现今地壳运动的大地测量观测研究[D]. 中国地震局地质研究所硕士学位论文, 2008.
[13] 王新民. 1870年四川巴塘地震的烈度及等震线特征[J]. 四川地震, 1990, 4: 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199004013.htm
[14] 伍先国, 蔡长星. 金沙江断裂带新活动和巴塘6.5级地震震中的确定[J]. 地震研究, 1992, 15(4): 401-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ199204006.htm
[15] 罗灼礼. 1989年巴塘6.7级地震群现场工作纪事[J]. 国际地震动态, 2017, 464(8): 1-13. doi: 10.3969/j.issn.0253-4975.2017.08.001
[16] 何玉林, 张绪奇, 郭劲. 1996年12月21日四川白玉、巴塘间5.5级地震烈度考察[J]. 四川地震, 1997, 2: 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199702006.htm
[17] 郭劲, 张庆云, 袁灿林. 巴塘6.7级强震群灾害及其影响[J]. 四川地震, 1990, 1: 43-47, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199001008.htm
[18] 李勇, 钟建华, 邵珠福, 等. 软沉积变形构造的分类和形成机制研究[J]. 地质论评, 2012, 58(5): 829-838. doi: 10.3969/j.issn.0371-5736.2012.05.004
[19] 钟宁, 蒋汉朝, 李海兵, 等. 青藏高原东部河湖相沉积中的软沉积物变形的主要成因类型及其特征[J]. 地球学报, 2020, 41(1): 23-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001003.htm
[20] 王莅斌, 尹功明, 袁仁茂, 等. 金沙江中游永胜昔格达层软沉积变形构造[J]. 地震地质, 2020, 42(5): 1072-1090. doi: 10.3969/j.issn.0253-4967.2020.05.004
[21] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. doi: 10.3969/j.issn.1004-9665.2012.02.001
[22] 张永双, 郭长宝, 姚鑫, 等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 2016, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
[23] Yin Y P, Wang F W, Sun P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5
[24] 闫茂华, 魏云杰, 李亚民, 等. 云南德钦日因卡滑坡孕灾背景及形成机理[J]. 地质通报, 2020, 39(12): 1971-1980. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201211&flag=1
[25] 向小龙, 孙炜锋, 谭成轩, 等. 降雨型滑坡失稳概率计算方法[J]. 地质通报, 2020, 39(7): 1115-1120. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200716&flag=1
[26] 吴瑞安, 马海善, 张俊才, 等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 2021, 48(5): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105013.htm
[27] 龙维. 金沙江上游特米大型古滑坡成因及稳定性研究[D]. 中国地质大学(北京)硕士学位论文, 2015.
[28] Densmore A L, Mcadoo B G. Hillslope Evolution by Bedrock Landslides[J]. Science, 1997, 275(5298): 369-372. doi: 10.1126/science.275.5298.369
[29] 李艳豪, 蒋汉朝, 徐红艳, 等. 四川岷江上游滑坡触发因素分析[J]. 地震地质, 2015, 37(4): 1147-1161. doi: 10.3969/j.issn.0253-4967.2015.04.017
[30] 钟荫乾. 滑坡与降雨关系及其预报[J]. 中国地质灾害与防治学报, 1998, 9(4): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH804.014.htm
[31] Dai F C, Lee C F. Frequency-volume relation and prediction of rainfall-induced landslides[J]. Engineering Geology, 2001, 59(3): 253-266. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0013795200000776&originContentFamily=serial&_origin=article&_ts=1437958870&md5=9437676729eb094af86d5c55d2d515a7
[32] Dai F C, Xu C, Yao X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 2011, 40(4): 883-895. doi: 10.1016/j.jseaes.2010.04.010
[33] Tang L Y, Shen C M, Liu K, et al. Climatic and hydrological changes in the southeastern Qinghai-Tibetan Plateau during the past 18000 years[J]. Acta Micropalaeontologica Sinica, 2000, 17(2): 113-124. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT200002000.htm
[34] 常宏, 韩会卿, 章昱, 等. 鄂西清江流域滑坡崩塌致灾背景及成灾模式[J]. 现代地质, 2014, 28(2): 429-437. doi: 10.3969/j.issn.1000-8527.2014.02.022
[35] 温铭生, 方志伟, 王阳谷. 都江堰市五里坡特大滑坡灾害特征与致灾成因[J]. 现代地质, 2015, 29(2): 448-453. doi: 10.3969/j.issn.1000-8527.2015.02.032
[36] 张永双, 吴瑞安, 郭长宝, 等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm
[37] 张永双, 任三绍, 郭长宝, 等. 活动断裂带工程地质研究[J]. 地质学报, 2019, 93(4): 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201904001.htm
[38] 张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm
[39] Zhang Y S, Guo C B, Lan H X, et al. Reactivation mechanism of ancient giant landslides in the tectonically active zone: a case study in Southwest China[J]. Environmental Earth Sciences, 2015, 74(2): 1719-1729. doi: 10.1007/s12665-015-4180-6
[40] 闫怡秋, 杨志华, 张绪教, 等. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质, 2021, 35(1): 26-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101004.htm
[41] 白永健, 李明辉, 王东辉, 等. 金沙江中游巴塘县地质灾害发育特征及成灾规律分析[J]. 中国地质灾害与防治学报, 2014, 25(2): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201402023.htm
[42] Keefer D K. Landslides caused by earthquakes[J]. GSA Bulletin, 1984, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
[43] 丁彦慧, 王余庆, 孙进忠. 地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J]. 地球物理学报, 1999, 42(S1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1999S1014.htm
-