水合物藏的类型、特点及开发方法探讨

欧芬兰, 于彦江, 寇贝贝, 陈靓. 水合物藏的类型、特点及开发方法探讨[J]. 海洋地质与第四纪地质, 2022, 42(1): 194-213. doi: 10.16562/j.cnki.0256-1492.2021010601
引用本文: 欧芬兰, 于彦江, 寇贝贝, 陈靓. 水合物藏的类型、特点及开发方法探讨[J]. 海洋地质与第四纪地质, 2022, 42(1): 194-213. doi: 10.16562/j.cnki.0256-1492.2021010601
OU Fenlan, YU Yanjiang, KOU Beibei, CHEN Liang. Gas hydrate reservoir types, characteristics and development methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 194-213. doi: 10.16562/j.cnki.0256-1492.2021010601
Citation: OU Fenlan, YU Yanjiang, KOU Beibei, CHEN Liang. Gas hydrate reservoir types, characteristics and development methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 194-213. doi: 10.16562/j.cnki.0256-1492.2021010601

水合物藏的类型、特点及开发方法探讨

  • 基金项目: 广东省基础与应用基础研究重大项目(2020B0301030003);中国地质调查局项目(DD20190226);自然资源部海底矿产资源重点实验室2018年度开放项目(KLMMR-2018-A-03)
详细信息
    作者简介: 欧芬兰(1989—),女,博士,工程师,主要从事天然气水合物试采研究,E-mail:514690110@qq.com
  • 中图分类号: P754

Gas hydrate reservoir types, characteristics and development methods

  • 天然气水合物作为潜能巨大、资源量丰富、燃烧值高的未来新能源,但由于其特殊的物理力学性质和赋存状态,经济开采技术仍面临诸多难题。本文以全球勘探发现存在天然气水合物的地区为基础,介绍了全球主要水合物的海陆资源分布及开采难易程度;以主要影响天然气水合物开采方式选择因素为基础,分析了天然气水合物在地层中的赋存类型、成藏模式和储层分类方法;以全球已开展的天然气水合物试采项目为基础,对比分析了现有多种天然气水合物开采方法的优缺点和适用条件;在现有开采方法条件下,为不同赋存状态、成藏模式和储层分类的天然气水合物选择出适合的开采方法,为建立完整的天然气水合物开采技术体系和未来实现商业化开采提供参考。

  • 加载中
  • 图 1  世界上存在水合物资源的区域[30]

    Figure 1. 

    图 2  天然气水合物资源金字塔及主要地层类型[50]

    Figure 2. 

    图 3  不同天然气水合物系统的组成原理[55]

    Figure 3. 

    图 4  水合物在储层中的赋存类型[58]

    Figure 4. 

    图 5  水合物的Moridis储层分类[92]

    Figure 5. 

    图 6  降压法示意图

    Figure 6. 

    图 7  热激法示意图

    Figure 7. 

    图 8  化学抑制剂注入法示意图

    Figure 8. 

    图 9  置换法示意图

    Figure 9. 

    图 10  固态流化法示意图[156]

    Figure 10. 

    图 11  机械-热联合开采法示意图[158]

    Figure 11. 

    表 1  全世界主要的陆地冻土和海域水合物分布带[31]

    Table 1.  Major marine and land gas hydrate distribution zones in the world[31]

    类型地理位置埋藏深度及分布范围勘探及试采地点
    陆地冻土
    水合物
    麦索雅哈河流域至西伯利亚北部区域水合物埋藏深度为300~1 000 m,分布面积为1 700×106 km2麦索雅哈气田
    普拉德霍湾至阿拉斯加北坡区域水合物埋藏深度为210~950 m,阿拉斯加北坡砂质储层的平均资源量为 2.4万亿m3 [32]普拉德霍湾气田Ignik Sikumi项目;Mount Elbert地质探井
    麦肯齐三角洲盆地及北极区域水合物埋藏深度为200 m以下,水合物储量约为0.01~1万亿m3,潜在的甲烷储量大约为1~100万亿m3[29]麦肯齐三角洲理查德岛的Mallik区块
    青藏高原永久冻土区域水合物埋藏在永久冻土层之下133~396 m,冻土面积达215×104 km2[33]祁连山永久冻土区钻井
    海域水合物北冰洋的水合物生成带水合物分布在北极大陆架90 m水深至海底的永久冻土带加拿大北极岛
    大西洋的水合物生成带布莱克海脊(水合物矿床厚度约20 m,原地资源量超28万亿m3[34])、墨西哥湾(水合物埋深泥线以下500~1 000 m区域)、加勒比海、斯匹次卑尔根岛边缘、几内亚湾(水合物水深超过1 200 m,总覆盖面积达到
    35 000 km2的区域[35]
    东海岸布莱克海台大洋钻探、墨西哥湾近海勘探、西非喀麦隆近海勘查
    太平洋的水合物生成带中国南海(水合物资源量估算值为6.3×1013 m3,其中南海北部陆坡资源量为4.0×1013 m3[36])、日本南海海槽(水合物面积为7 000 km2,原地气资源量平均估算值约1.1万亿m3[37])、韩国东海郁陵盆地(存在大量水合物“气烟囱”构造,水合物矿床可能藏有1.2亿t的碳[14])、新西兰希库朗伊海槽(水合物中估计含有5~11万亿m3甲烷[38])、白令海、鄂霍茨克海、中美洲海槽、北加利福尼亚俄勒冈近海、秘鲁海槽神狐海域、Nankai海槽、Ulleung盆地、鄂霍茨克海千岛盆地
    印度洋的水合物生成带印度半岛近海(水合物的存在区域约1.5 km2[39])、孟加拉湾、阿拉伯海(水合物沉积面积约80000 km2)、阿曼湾(水合物层稳定存在于350~700 m的沉积物层)Krishna Godavari盆地、Makran Margin
    陆地内海的水合物生成带黑海(水合物层厚度为160~500 m,分布面积约为3.0×104 km2,总量约为42×1012 m3)、里海(水合物层位于海床下390~480 m,厚度约为134~152 m[40-41])、亚速海盆地、贝加尔湖(水合物资源量估算相当于(0.88~9)×1012 m3的天然气[42]Crimea、Caucasus、贝加尔湖
    下载: 导出CSV

    表 2  全世界主要的水合物勘探区水合物藏的特征和主要开采方法

    Table 2.  Characteristics and main mining methods of hydrate reservoirs in major hydrate exploration areas around the world

    类型勘探区域储层岩性赋存类型成藏模式主要开采方法
    陆地冻土水合物俄罗斯麦索雅哈气田砂岩孔隙充填型成岩型降压法
    美国阿拉斯加北坡冻土带砂岩孔隙充填型成岩型降压法
    加拿大麦肯齐三角洲盆地砂岩、砾岩孔隙充填型成岩型降压法
    中国祁连山永久冻土带泥岩、粉砂岩孔隙充填型,块状、层状成岩型降压法结合置换法
    海域水合物中国南海神狐海域粉沙质黏土、含粉沙黏土孔隙充填型,脉状、结节状构造型置换法结合降压法
    美国布莱克海脊黏土质粉砂、粉砂质黏土孔隙充填型,极少数块状、结节状、层状、脉状构造型置换法结合降压法
    美国墨西哥湾火山碎屑砂岩、砂岩夹泥等细粒沉积物孔隙充填型,部分裂隙充填型构造型置换法结合降压法
    日本南海海槽粉沙质沙、黏土质粉沙孔隙充填型构造型置换法结合降压法
    韩国郁陵盆地黏土质粉砂岩、砂质粉砂岩、粉砂质砂岩裂隙充填型,部分孔隙充填型,少数块状构造型置换法结合降压法
    印度近海粉砂质黏土裂隙充填型复合型降压法结合置换法
    下载: 导出CSV
  • [1]

    Andreassen K, Hart P E, MacKay M. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates [J]. Marine Geology, 1997, 137(1-2): 25-40. doi: 10.1016/S0025-3227(96)00076-X

    [2]

    Archer D. Methane hydrate stability and anthropogenic climate change [J]. Biogeosciences, 2007, 4: 521-544. doi: 10.5194/bg-4-521-2007

    [3]

    Byk S S, Formina V I. Gas hydrates [J]. Russian Chemical Reviews, 1968, 37(6): 469-491. doi: 10.1070/RC1968v037n06ABEH001654

    [4]

    Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere? [J]. Chemical Geology, 1988, 71(1-3): 41-51. doi: 10.1016/0009-2541(88)90104-0

    [5]

    Kvenvolden K A. Potential effects of gas hydrate on human welfare [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3420-3426. doi: 10.1073/pnas.96.7.3420

    [6]

    Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601. doi: 10.1073/pnas.0800885105

    [7]

    Boswell R, Collett T S. Current perspectives on gas hydrate resources [J]. Energy and Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H

    [8]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [9]

    Sloan E D Jr. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135

    [10]

    Collett T S. Energy resource potential of natural gas hydrates [J]. AAPG Bulletin, 2002, 86(11): 1971-1992.

    [11]

    Kerr R A. Gas hydrate resource: smaller but sooner [J]. Science, 2004, 303(5660): 946-947. doi: 10.1126/science.303.5660.946

    [12]

    Ye J L, Qin X W, Xie W W, et al. The second natural gas hydrate production test in the South China Sea [J]. China Geology, 2020, 3(2): 197-209.

    [13]

    Lee J Y, Ryu B J, Yun T S, et al. Review on the gas hydrate development and production as a new energy resource [J]. KSCE Journal of Civil Engineering, 2011, 15(4): 689-696. doi: 10.1007/s12205-011-0009-3

    [14]

    Seol J, Lee H. Natural gas hydrate as a potential energy resource: From occurrence to production [J]. Korean Journal of Chemical Engineering, 2013, 30(4): 771-786. doi: 10.1007/s11814-013-0033-8

    [15]

    Liu L P, Sun Z L, Zhang L, et al. Progress in global gas hydrate development and production as a new energy resource [J]. Acta Geologica Sinica, 2019, 93(3): 731-755. doi: 10.1111/1755-6724.13876

    [16]

    Durham W B, Kirby S H, Stern L A, et al. The strength and rheology of methane clathrate hydrate [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 2182.

    [17]

    Dickens G R. A methane trigger for rapid warming? [J]. Science, 2003, 299(5609): 1017. doi: 10.1126/science.1080789

    [18]

    Gu G S, Dickens G R, Bhatnagar G, et al. Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures [J]. Nature Geoscience, 2011, 4(12): 848-851. doi: 10.1038/ngeo1301

    [19]

    Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability [J]. Marine Geology, 2004, 213(1-4): 379-401. doi: 10.1016/j.margeo.2004.10.015

    [20]

    Archer D, Buffett B. Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(3): Q03002.

    [21]

    Brown H E, Holbrook W S, Hornbach M J, et al. Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway [J]. Marine Geology, 2006, 229(3-4): 179-186. doi: 10.1016/j.margeo.2006.03.011

    [22]

    Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: a review [J]. Browse Collections, 2009, 89: 146-219.

    [23]

    Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea [J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003

    [24]

    Yu T, Guan G Q, Abudula A. Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan [J]. Applied Energy, 2019, 251: 113338. doi: 10.1016/j.apenergy.2019.113338

    [25]

    陈强, 胡高伟, 李彦龙, 等. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 2020, 36(9):44-55

    CHEN Qiang, HU Gaowei, LI Yanlong, et al. A prospect review of new technology for development of marine gas hydrate resources [J]. Marine Geology Frontiers, 2020, 36(9): 44-55.

    [26]

    李守定, 孙一鸣, 陈卫昌, 等. 天然气水合物开采方法及海域试采分析[J]. 工程地质学报, 2019, 27(1):55-68

    LI Shouding, SUN Yiming, CHEN Weichang, et al. Analyses of gas production methods and offshore production tests of natural gas hydrates [J]. Journal of Engineering Geology, 2019, 27(1): 55-68.

    [27]

    Makogon Y F. Natural gas hydrates-A promising source of energy [J]. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59. doi: 10.1016/j.jngse.2009.12.004

    [28]

    Moridis G J, Collett T S, Pooladi-Darvish M, et al. Challenges, uncertainties and issues facing gas production from gas hydrate deposits [J]. SPE Reservoir Evaluation and Engineering, 2011, 14(1): 76-112. doi: 10.2118/131792-PA

    [29]

    Lu S M. A global survey of gas hydrate development and reserves: Specifically in the marine field [J]. Renewable and Sustainable Energy Reviews, 2015, 41: 884-900. doi: 10.1016/j.rser.2014.08.063

    [30]

    Waite W F, Ruppel C D, Boze L G, et al. Preliminary global database of known and inferred gas hydrate locations: U. S. Geological Survey Data Release, https://doi.org/10.5066/P9llFVJM, 2020.

    [31]

    Liu B, Yuan Q, Su K H, et al. Experimental simulation of the exploitation of natural gas hydrate [J]. Energies, 2012, 5(2): 466-493. doi: 10.3390/en5020466

    [32]

    Collett T S, Lewis R E, Winters W J, et al. Downhole well log and core montages from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope [J]. Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016

    [33]

    周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 10-11.

    ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. China's Permafrost[M]. Beijing: Science Press, 2000: 10-11.

    [34]

    Moridis G J, Sloan E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments [J]. Energy Conversion and Management, 2007, 48(6): 1834-1849. doi: 10.1016/j.enconman.2007.01.023

    [35]

    Le A N, Huuse M, Redfern J, et al. Seismic characterization of a Bottom Simulating Reflection (BSR) and plumbing system of the Cameroon margin, offshore West Africa [J]. Marine and Petroleum Geology, 2015, 68: 629-647. doi: 10.1016/j.marpetgeo.2014.12.006

    [36]

    卢振权, 吴必豪, 金春爽. 天然气水合物资源量的一种估算方法: 以南海北部陆坡为例[J]. 石油实验地质, 2007, 29(3):319-323, 328 doi: 10.3969/j.issn.1001-6112.2007.03.019

    LU Zhenquan, WU Bihao, JIN Chunshuang. A method for gas hydrate resource estimation: An example of preliminary estimation of gas hydrates in the northern continental slope, South China Sea [J]. Petroleum Geology and Experiment, 2007, 29(3): 319-323, 328. doi: 10.3969/j.issn.1001-6112.2007.03.019

    [37]

    Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards[M]. Oklahoma, Tulsa: American Association of Petroleum Geologists, 2011: 50-51.

    [38]

    Kroeger K F, Plaza-Faverola A, Barnes P M, et al. Thermal evolution of the New Zealand Hikurangi subduction margin: Impact on natural gas generation and methane hydrate formation – A model study [J]. Marine and Petroleum Geology, 2015, 63: 97-114. doi: 10.1016/j.marpetgeo.2015.01.020

    [39]

    Riedel M, Collett T S, Shankar U. Documenting channel features associated with gas hydrates in the Krishna-Godavari Basin, offshore India [J]. Marine Geology, 2011, 279(1-4): 1-11. doi: 10.1016/j.margeo.2010.10.008

    [40]

    Kida M, Khlystov O, Zemskaya T, et al. Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin [J]. Geophysical Research Letters, 2006, 33(24): L24603. doi: 10.1029/2006GL028296

    [41]

    Kide M, Hachikubo A, Sakagami H, et al. Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(5): Q05003.

    [42]

    肖莹莹, 左力艳, 张诚. 天然气水合物研究与开发试验概述[J]. 内蒙古石油化工, 2018, 44(10):18-22 doi: 10.3969/j.issn.1006-7981.2018.10.004

    XIAO Yingying, ZUO Liyan, ZHANG Cheng. An overview of the international gas hydrate research and trial production [J]. Inner Mongolia Petrochemical Industry, 2018, 44(10): 18-22. doi: 10.3969/j.issn.1006-7981.2018.10.004

    [43]

    Musakaev N G, Khasanov M K, Borodin S L. The mathematical model of the gas hydrate deposit development in permafrost [J]. International Journal of Heat and Mass Transfer, 2018, 118: 455-461. doi: 10.1016/j.ijheatmasstransfer.2017.10.127

    [44]

    关进安, 樊栓狮, 梁德青, 等. 自然界天然气水合物勘探开发概述[J]. 新能源进展, 2019, 7(6):522-531

    GUAN Jin’an, FAN Shuanshi, LIANG Deqing, et al. An overview on gas hydrate exploration and exploitation in natural fields [J]. Advances in New and Renewable Energy, 2019, 7(6): 522-531.

    [45]

    Bhatnagar G, Chapman W G, Dickens G R, et al. Generalization of gas hydrate distribution and Saturation in marine sediments by scaling of thermodynamic and transport processes [J]. American Journal of Science, 2007, 307(6): 861-900. doi: 10.2475/06.2007.01

    [46]

    宣之强, 李钟模, 吴必豪, 等. 天然气水合物新能源简介-对全球试采、开发和研究天然气水合物现状的综述[J]. 化工矿产地质, 2018, 40(1):48-52 doi: 10.3969/j.issn.1006-5296.2018.01.009

    XUAN Zhiqiang, LI Zhongmo, WU Bihao, et al. Introduction to new energy gas hydrate - A review on globle pilot production, development and reserch status of gas hydrate [J]. Geology of Chemical Minerals, 2018, 40(1): 48-52. doi: 10.3969/j.issn.1006-5296.2018.01.009

    [47]

    Boswell R. Is gas hydrate energy within reach? [J]. Science, 2009, 325(5943): 957-958. doi: 10.1126/science.1175074

    [48]

    Max M D, Johnson A H. Hydrate petroleum system approach to natural gas hydrate exploration [J]. Petroleum Geoscience, 2014, 20(2): 187-199. doi: 10.1144/petgeo2012-049

    [49]

    吴西顺, 黄文斌, 刘文超, 等. 全球天然气水合物资源潜力评价及勘查试采进展[J]. 海洋地质前沿, 2017, 33(7):63-78

    WU Xishun, HUANG Wenbin, LIU Wenchao, et al. World-wide progress of resource potential assessment, exploration and production test of natural gas hydrate [J]. Marine Geology Frontiers, 2017, 33(7): 63-78.

    [50]

    程聪, 姜涛, 匡增桂, 等. 天然气水合物系统特征及其对我国水合物勘查的启示[J]. 地质科技情报, 2019, 38(4):30-40

    CHENG Cong, JIANG Tao, KUANG Zenggui, et al. Characteristics of gas hydrate system and its enlightenment to gas hydrate exploration in China [J]. Geological Science and Technology Information, 2019, 38(4): 30-40.

    [51]

    樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6):819-826 doi: 10.3969/j.issn.1672-1926.2007.06.009

    FAN Shuanshi, GUAN Jin’an, LIANG Deqing, et al. A dynamic theory on natural gas hydrate reservoir formation [J]. Natural Gas Geoscience, 2007, 18(6): 819-826. doi: 10.3969/j.issn.1672-1926.2007.06.009

    [52]

    Malone R D. Overview gas hydrate geology and geography [J]. Annals of the New York Academy of Sciences, 1994, 715(1): 225-231.

    [53]

    Uchida T, Dallimore S, Mikami J. Occurrences of natural gas hydrates beneath the permafrost zone in Mackenzie delta: visual and X-ray CT imagery [J]. Annals of the New York Academy of Sciences, 2000, 912(1): 1021-1033.

    [54]

    Collett T, Bahk J J, Baker R, et al. Methane hydrates in nature - current knowledge and challenges [J]. Journal of Chemical and Engineering Date, 2015, 60(2): 319-329. doi: 10.1021/je500604h

    [55]

    卜庆涛, 胡高伟, 业渝光, 等. 天然气水合物成藏体系研究进展[J]. 新能源进展, 2015, 3(6):435-443 doi: 10.3969/j.issn.2095-560X.2015.06.005

    BU Qingtao, HU Gaowei, YE Yuguang, et al. Research progress in natural gas hydrate accumulation system [J]. Advances in New and Renewable Energy, 2015, 3(6): 435-443. doi: 10.3969/j.issn.2095-560X.2015.06.005

    [56]

    Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023

    [57]

    Cheng B, Xu J B, Lu Z Q, et al. Hydrocarbon source for oil and gas indication associated with gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai, Northwest China [J]. Marine and Petroleum Geology, 2018, 89: 202-215. doi: 10.1016/j.marpetgeo.2017.02.019

    [58]

    Dai J C, Xu H B, Snyder F, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: examples from the northern deepwater Gulf of Mexico [J]. The Leading Edge, 2004, 23(1): 60-66. doi: 10.1190/1.1645456

    [59]

    Holland G P, Jenkins J E, Creager M S, et al. Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states [J]. Biomacromolecules, 2008, 9(2): 651-657. doi: 10.1021/bm700950u

    [60]

    刘杰, 孙美静, 杨睿, 等. 马更些三角洲冻土区天然气水合物成藏的地质控制因素[J]. 新能源进展, 2018, 6(1):47-54 doi: 10.3969/j.issn.2095-560X.2018.01.008

    LIU Jie, SUN Meijing, YANG Rui, et al. Geologic controls on permafrost-associated gas hydrate occurrence in the Mackenzie delta [J]. Advances in New and Renewable Energy, 2018, 6(1): 47-54. doi: 10.3969/j.issn.2095-560X.2018.01.008

    [61]

    何梅兴, 方慧, 祝有海, 等. 祁连山哈拉湖坳陷地质构造特征及天然气水合物成藏地质条件研究[J]. 中国地质, 2020, 47(1):173-187 doi: 10.12029/gc20200114

    HE Meixing, FANG Hui, ZHU Youhai, et al. A study of geological structural features of Hala Lake Depression in Qilian Mountain and reservoir-forming conditions of natural gas hydrate [J]. Geology in China, 2020, 47(1): 173-187. doi: 10.12029/gc20200114

    [62]

    杨承志, 罗坤文, 梁金强, 等. 南海北部神狐海域浅层深水沉积体对天然气水合物成藏的控制[J]. 天然气工业, 2020, 40(8):68-76 doi: 10.3787/j.issn.1000-0976.2020.08.005

    YANG Chengzhi, LUO Kunwen, LIANG Jinqiang, et al. Control effect of shallow-burial deepwater deposits on natural gas hydrate accumulation in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 68-76. doi: 10.3787/j.issn.1000-0976.2020.08.005

    [63]

    樊栓狮, 刘锋, 陈多福. 海洋天然气水合物的形成机理探讨[J]. 天然气地球科学, 2004, 15(5):524-530 doi: 10.3969/j.issn.1672-1926.2004.05.017

    FAN Shuanshi, LIU Feng, CHEN Duofu. The research of the origin mechanism of marine gas hydrate [J]. Natural Gas Geoscience, 2004, 15(5): 524-530. doi: 10.3969/j.issn.1672-1926.2004.05.017

    [64]

    Lee M W, Collett T S. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955H well [J]. Marine and Petroleum Geology, 2012, 34(1): 62-71. doi: 10.1016/j.marpetgeo.2011.08.002

    [65]

    Tsuji Y, Ishida H, Nakamizu M. Overview of the MITI Nankai Trough Wells: a milestone in the evaluation of methane hydrate resources [J]. Resource Geology, 2004, 54(1): 3-10. doi: 10.1111/j.1751-3928.2004.tb00182.x

    [66]

    Riedel M, Collett T S, Malone M J, et al. Stages of gas-hydrate evolution on the northern Cascadia margin [J]. Scientific Drilling, 2006, 3: 18-24. doi: 10.5194/sd-3-18-2006

    [67]

    Sassen R, Sweet S T, DeFreitas D A, et al. Gas hydrate and crude oil from the Mississippi Fan Foldbelt, downdip Gulf of Mexico Salt Basin: significance to petroleum system [J]. Organic Geochemistry, 2001, 32(8): 999-1008. doi: 10.1016/S0146-6380(01)00064-X

    [68]

    Kim G Y, Narantsetseg B, Ryu B J, et al. Fracture orientation and induced anisotropy of gas hydrate-bearing sediments in seismic chimney-like-structures of the Ulleung Basin, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 182-194. doi: 10.1016/j.marpetgeo.2013.06.001

    [69]

    Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research, 2009, 114(B7): B07102.

    [70]

    吴能友, 梁金强, 王宏斌, 等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质, 2008, 22(3):356-362 doi: 10.3969/j.issn.1000-8527.2008.03.003

    WU Nengyou, LIANG Jinqiang, WANG Hongbin, et al. Marine gas hydrate system: state of the art [J]. Geoscience, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003

    [71]

    Qin X W, Lu J A, Lu H L, et al. Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea [J]. China Geology, 2020, 3(2): 210-220.

    [72]

    吴时国, 姚伯初. 天然气水合物赋存的地质构造分析与资源评价[M]. 北京: 科学出版社, 2008: 165-166.

    WU Shiguo, YAO Bochu. Geological Structure Analysis and Resource Evaluation of Natural Gas Hydrate[M]. Beijing: Science Press, 2008: 165-166.

    [73]

    苏明, 沙志彬, 匡增桂, 等. 海底峡谷侵蚀-沉积作用与天然气水合物成藏[J]. 现代地质, 2015, 29(1):155-162 doi: 10.3969/j.issn.1000-8527.2015.01.019

    SU Ming, SHA Zhibin, KUANG Zenggui, et al. Erosion and sedimentation of the submarine canyons and the relationship with gas hydrate accumulation [J]. Geoscience, 2015, 29(1): 155-162. doi: 10.3969/j.issn.1000-8527.2015.01.019

    [74]

    文怀军, 卢振权, 李永红, 等. 青海木里三露天井田天然气水合物调查研究新进展[J]. 现代地质, 2015, 29(5):983-994 doi: 10.3969/j.issn.1000-8527.2015.05.001

    WEN Huaijun, LU Zhenquan, LI Yonghong, et al. New Advance on Gas Hydrate Survey and Research in Sanlutian of Muli, Qinghai [J]. Geoscience, 2015, 29(5): 983-994. doi: 10.3969/j.issn.1000-8527.2015.05.001

    [75]

    Lu Z Q, Zhu Y H, Liu H, et al. Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai [J]. Marine and Petroleum Geology, 2013, 43: 341-348. doi: 10.1016/j.marpetgeo.2013.01.003

    [76]

    吴传芝, 赵克斌, 孙长青, 等. 天然气水合物开采研究现状[J]. 地质科技情报, 2008, 27(1):47-52 doi: 10.3969/j.issn.1000-7849.2008.01.008

    WU Chuanzhi, ZHAO Kebin, SUN Changqing, et al. Current research in natural gas hydrate production [J]. Geological Science and Technology Information, 2008, 27(1): 47-52. doi: 10.3969/j.issn.1000-7849.2008.01.008

    [77]

    Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska [J]. American Association of Petroleum Geologists Bulletin, 1993, 77(5): 793-812.

    [78]

    Lane L S, Dietrich J R. Tertiary structural evolution of the Beaufort Sea-Mackenzie Delta region, Arctic Canada [J]. Bulletin of Canadian Petroleum Geology, 1995, 43(3): 293-314.

    [79]

    Majorowicz J, Osadetz K, Safanda J. Gas hydrate formation and dissipation histories in the northern margin of Canada: Beaufort-Mackenzie and the Sverdrup Basins [J]. Journal of Geological Research, 2012, 2012: 879393.

    [80]

    何家雄, 颜文, 祝有海, 等. 南海北部边缘盆地生物气/亚生物气资源与天然气水合物成矿成藏[J]. 天然气工业, 2013, 33(6):121-134 doi: 10.3787/j.issn.1000-0976.2013.06.023

    HE Jiaxiong, YAN Wen, ZHU Youhai, et al. Bio-genetic and sub-biogenetic gas resource potential and genetic types of natural gas hydrates in the northern marginal basins of South China Sea [J]. Natural Gas Industry, 2013, 33(6): 121-134. doi: 10.3787/j.issn.1000-0976.2013.06.023

    [81]

    Wei J G, Fang Y X, Lu H L, et al. Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 622-628. doi: 10.1016/j.marpetgeo.2018.07.028

    [82]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [83]

    Jia J H, Tsuji T, Matsuoka T. Gas hydrate saturation and distribution in the Kumano Forearc Basin of the Nankai Trough [J]. Exploration Geophysics, 2017, 48(2): 137-150. doi: 10.1071/EG15127

    [84]

    Dong G Y, Kang N K, Yi B Y, et al. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea [J]. Marine and Petroleum Geology, 2013, 47: 236-247. doi: 10.1016/j.marpetgeo.2013.07.001

    [85]

    Ramana M V, Ramprasad T, Paropkari A L, et al. Multidisciplinary investigations exploring indicators of gas hydrate occurrence in the Krishna-Godavari Basin offshore, east coast of India [J]. Geo-Marine Letters, 2009, 29(1): 25-38. doi: 10.1007/s00367-008-0121-7

    [86]

    Riedel M, Collett T S, Kumar P, et al. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India [J]. Marine and Petroleum Geology, 2010, 27(7): 1476-1493. doi: 10.1016/j.marpetgeo.2010.06.002

    [87]

    杨木壮, 潘安定, 沙志彬. 陆缘地区天然气水合物成藏地质模式[J]. 海洋地质与第四纪地质, 2010, 30(6):85-90

    YANG Muzhuang, PANG Anding, SHA Zhibin. Geological models of gas hydrates deposits along the continental margin [J]. Marine Geology and Quaternary Geology, 2010, 30(6): 85-90.

    [88]

    梁金强, 王宏斌, 苏新. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135

    LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea [J]. Natural Gas Industry, 2014, 34(7): 128-135.

    [89]

    胡高伟, 卜庆涛, 吕万军, 等. 主动、被动大陆边缘天然气水合物成藏模式对比[J]. 天然气工业, 2020, 40(8):45-58 doi: 10.3787/j.issn.1000-0976.2020.08.003

    HU Gaowei, BU Qingtao, LU Wanjun, et al. A comparative study on natural gas hydrate accumulation models at active and passive continental margins [J]. Natural Gas Industry, 2020, 40(8): 45-58. doi: 10.3787/j.issn.1000-0976.2020.08.003

    [90]

    龚建明, 张敏, 陈建文, 等. 天然气水合物发现区和潜在区气源成因[J]. 现代地质, 2008, 22(3):415-419 doi: 10.3969/j.issn.1000-8527.2008.03.011

    GONG Jianming, ZHANG Min, CHEN Jianwen, et al. Gas sources genesis in the gas hydrate discoveries and potential areas [J]. Geoscience, 2008, 22(3): 415-419. doi: 10.3969/j.issn.1000-8527.2008.03.011

    [91]

    何家雄, 颜文, 祝有海, 等. 全球天然气水合物成矿气体成因类型及气源构成与主控因素[J]. 海洋地质与第四纪地质, 2013, 33(2):121-128

    HE Jiaxiong, YAN Wen, ZHU Youhai, et al. Genetic types of gas hydrate in the world and their main controlling factors [J]. Marine Geology and Quaternary Geology, 2013, 33(2): 121-128.

    [92]

    Moridis G J. Numerical studies of gas production from methane hydrates [J]. SPE Journal, 2003, 8(4): 359-370. doi: 10.2118/87330-PA

    [93]

    Makogon Y F, Holditch S A, Makogon T Y. Russian field illustrates gas-hydrate production [J]. Oil and Gas Journal, 2005, 103(5): 43-47.

    [94]

    Dallimore S, Collet T S, Taylor A E, et al. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada: Preface [J]. Bulletin of the Geological Survey of Canada, 2005, 585: 3-5.

    [95]

    Liu C L, Ye Y G, Meng Q G, et al. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea [J]. Marine Geology, 2012, 307-310: 22-27. doi: 10.1016/j.margeo.2012.03.004

    [96]

    Qian J, Wang X J, Collett T S, et al. Downhole log evidence for the coexistence of structure II gas hydrate and free gas below the bottom simulating reflector in the South China Sea [J]. Marine and Petroleum Geology, 2018, 98: 662-674. doi: 10.1016/j.marpetgeo.2018.09.024

    [97]

    Lu H L, Seo Y T, Lee J W, et al. Complex gas hydrate from the Cascadia margin [J]. Nature, 2007, 445(7125): 303-306. doi: 10.1038/nature05463

    [98]

    Klapp S A, Murshed M M, Pape T, et al. Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico [J]. Earth and Planetary Science Letters, 2010, 299(1-2): 207-217. doi: 10.1016/j.jpgl.2010.09.001

    [99]

    Kide M, Suzuki K, Kawamura T, et al. Characteristics of natural gas hydrates occurring in pore-spaces of marine sediments collected from the eastern Nankai Trough, off Japan [J]. Energy and Fuels, 2009, 23(11): 5580-5586. doi: 10.1021/ef900612f

    [100]

    Lu Z Q, Zhu Y H, Zhang Y Q, et al. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai province, China [J]. Cold Regions Science and Technology, 2011, 66(2-3): 93-104. doi: 10.1016/j.coldregions.2011.01.008

    [101]

    Lu Z Q, Zhai G Y, Zhu Y H, et al. New discovery of the permafrost gas hydrate accumulation in Qilian Mountain, China [J]. China Geology, 2018, 1(2): 306-307. doi: 10.31035/cg2018034

    [102]

    Ryu B J, Riedel M. Gas hydrates in the Ulleung Basin, East Sea of Korea [J]. Terrestrial Atmospheric and Oceanic Sciences, 2017, 28(6): 943-963. doi: 10.3319/TAO.2017.10.21.01

    [103]

    Kide M, Jin Y, Yoneda J, et al. Crystallographic and geochemical properties of natural gas hydrates accumulated in the National Gas Hydrate Program Expedition 02 drilling sites in the Krishna-Godavari Basin off India [J]. Marine and Petroleum Geology, 2019, 108: 471-481. doi: 10.1016/j.marpetgeo.2018.10.012

    [104]

    刘俊杰, 马贵阳, 潘振, 等. 天然气水合物开采理论及开采方法分析[J]. 当代化工, 2014, 43(11):2293-2296 doi: 10.3969/j.issn.1671-0460.2014.11.027

    LIU Junjie, MA Guiyang, PAN Zhen, et al. Analysis on the mining theory and methods of natural gas hydrate [J]. Contemporary Chemical Industry, 2014, 43(11): 2293-2296. doi: 10.3969/j.issn.1671-0460.2014.11.027

    [105]

    张洋, 李广雪, 刘芳. 天然气水合物开采技术现状[J]. 海洋地质前沿, 2016, 32(4):63-68

    ZHANG Yang, LI Guangxue, LIU Fang. Current status of mining technology for natural gas hydrate [J]. Marine Geology Frontiers, 2016, 32(4): 63-68.

    [106]

    Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization [J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. doi: 10.1016/S0009-2509(01)00265-2

    [107]

    Li X S, Zhang Y, Li G, et al. Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator [J]. Energy & Fuels, 2011, 25(10): 4497-4505.

    [108]

    Sung W M, Huh D G, Ryu B J, et al. Development and application of gas hydrate reservoir simulator based on depressurizing mechanism [J]. Korean Journal of Chemical Engineering, 2000, 17(3): 344-350. doi: 10.1007/BF02699051

    [109]

    Hong H, Pooladi-Darvish M, Bishnoi P R. Analytical modelling of gas production from hydrates in porous media [J]. The Journal of Canadian Petroleum Technology, 2003, 42(11): 45-56. doi: 10.2118/03-11-05

    [110]

    Konno Y, Yoneda J, Egawa K, et al. Permeability of Sediment Cores from Methane Hydrate Deposit in the Eastern Nankai Trough [J]. Marine and Petroleum Geology, 2015, 66: 487-495. doi: 10.1016/j.marpetgeo.2015.02.020

    [111]

    赵治宇, 向丹波, 诸林. 天然气水合物开采的方法及对环境的影响[J]. 中外能源, 2009, 14(4):33-36

    ZHAO Zhiyu, XIANG Danbo, ZHU Lin. Gas hydrate recovering methods and their environmental impacts [J]. Sino-Global Energy, 2009, 14(4): 33-36.

    [112]

    Grover T, Moridis G, Holditch S A. Analysis of reservoir performance of Messoyakha gas hydrate field [J]. Proceedings of the International Offshore and Polar Engineering Conference, 2009, 18: 49-56.

    [113]

    邵明娟, 张炜, 吴西顺, 等. 麦索亚哈气田天然气水合物的开发[J]. 国土资源情报, 2016(12):17-19, 31 doi: 10.3969/j.issn.1674-3709.2016.12.003

    SHAO Mingjuan, ZHANG Wei, WU Xishun, et al. Natural gas hydrate exploitation at Messoyakha gas field [J]. Land and Resources Information, 2016(12): 17-19, 31. doi: 10.3969/j.issn.1674-3709.2016.12.003

    [114]

    张炜, 白凤龙, 邵明娟, 等. 日本海域天然气水合物试采进展及其对我国的启示[J]. 海洋地质与第四纪地质, 2017, 37(5):27-33

    ZHANG Wei, BAI Fenglong, SHAO Mingjuan, et al. Progress of offshore natural gas hydrate production tests in Japan and implications [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 27-33.

    [115]

    张炜, 邵明娟, 田黔宁. 日本海域天然气水合物开发技术进展[J]. 石油钻探技术, 2017, 45(5):98-102

    ZHANG Wei, SHAO Mingjuan, TIAN Qianning. Technical progress of a pilot project to produce natural gas hydrate in Japanese waters [J]. Petroleum Drilling Techniques, 2017, 45(5): 98-102.

    [116]

    吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 1-11.

    [117]

    Ye J L, Qin X W, Qiu H J, et al. Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea [J]. China Geology, 2018, 1(2): 202-209. doi: 10.31035/cg2018029

    [118]

    Lu C, Xia Y X, Sun X X, et al. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea [J]. Energies, 2019, 12(19): 3688. doi: 10.3390/en12193688

    [119]

    Qin X W, Liang Q Y, Ye J L, et al. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea [J]. Applied Energy, 2020, 278: 115649. doi: 10.1016/j.apenergy.2020.115649

    [120]

    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568 doi: 10.12029/gc20200301

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology in China, 2020, 47(3): 557-568. doi: 10.12029/gc20200301

    [121]

    Sakamoto Y, Komai T, Kawamura T, et al. Laboratory-scale experiment of methane hydrate dissociation by hot-water injection and numerical analysis for permeability estimation in reservoir: Part 1-Numerical study for estimation of permeability in methane hydrate reservoir [J]. International Journal of Offshore and Polar Engineering, 2007, 17(1): 47-56.

    [122]

    李淑霞, 王炜, 陈月明, 等. 多孔介质中天然气水合物注热开采影响因素实验研究[J]. 海洋地质前沿, 2011, 27(6):49-54

    LI Shuxia, WANG Wei, CHEN Yueming, et al. Experimental study on influence factors of hot-brine stimulation for dissociation of NGH in porous medium [J]. Marine Geology Frontiers, 2011, 27(6): 49-54.

    [123]

    Li F G, Qing Y, Li T G, et al. A review: enhanced recovery of natural gas hydrate reservoirs [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2062-2073. doi: 10.1016/j.cjche.2018.11.007

    [124]

    Sun Y F, Wang Y F, Zhong J R, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode [J]. Applied Energy, 2019, 240: 215-225. doi: 10.1016/j.apenergy.2019.01.209

    [125]

    Islam M R. A new recovery technique for gas production from Alaskan gas hydrates [J]. Journal of Petroleum Science and Engineering, 1994, 11(4): 267-281. doi: 10.1016/0920-4105(94)90046-9

    [126]

    Zhao J F, Fan Z, Wang B, et al. Simulation of microwave stimulation for the production of gas from methane hydrate sediment [J]. Applied Energy, 2016, 168: 25-37. doi: 10.1016/j.apenergy.2016.01.091

    [127]

    Li B, Liu S D, Liang Y P, et al. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media [J]. Applied Energy, 2018, 227: 694-702. doi: 10.1016/j.apenergy.2017.08.066

    [128]

    Minagawa H, Ito T, Kimura S, et al. Depressurization and electrical heating of methane hydrate sediment for gas production: laboratory-scale experiments [J]. Journal of Natural Gas Science and Engineering, 2018, 50: 147-156. doi: 10.1016/j.jngse.2017.10.024

    [129]

    Liang Y P, Tan Y T, Luo Y J, et al. Progress and challenges on gas production from natural gas hydrate-bearing sediment [J]. Journal of Cleaner Production, 2020, 261: 121061. doi: 10.1016/j.jclepro.2020.121061

    [130]

    Liu S, Zhang Y Y, Luo Y J, et al. Analysis of hydrate exploitation by a new in-situ heat generation method with chemical reagents based on heat utilization [J]. Journal of Cleaner Production, 2020, 249: 119399. doi: 10.1016/j.jclepro.2019.119399

    [131]

    李守定, 李晓, 王思敬, 等. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报, 2020, 28(2):282-293

    LI Shouding, LI Xiao, WANG Sijing, et al. A novel method for natural gas hydrate production: depressurization and backfilling with in-situ supplemental heat [J]. Journal of Engineering Geology, 2020, 28(2): 282-293.

    [132]

    孙致学, 朱旭晨, 刘垒, 等. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质, 2019, 39(2):146-156

    SUN Zhixue, ZHU Xuchen, LIU Lei, et al. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy [J]. Marine Geology and Quaternary Geology, 2019, 39(2): 146-156.

    [133]

    成海燕. 2006-2008 Mallik天然气水合物开发试验进展[J]. 海洋地质动态, 2009, 25(1):20-21 doi: 10.3969/j.issn.1009-2722.2009.01.005

    CHENG Haiyan. Development of Mallik gas hydrate experiment during 2006-2008 [J]. Marine Geology Letters, 2009, 25(1): 20-21. doi: 10.3969/j.issn.1009-2722.2009.01.005

    [134]

    Fan S S, Zhang Y Z, Tian G L, et al. Natural gas hydrate dissociation by presence of ethylene glycol [J]. Energy and Fuels, 2006, 20(1): 324-326. doi: 10.1021/ef0502204

    [135]

    Kamath V A, Godbole S P. Evaluation of hot-brine stimulation technique for gas production from natural gas hydrates [J]. Journal of Petroleum Technology, 1987, 39(11): 1379-1388. doi: 10.2118/13596-PA

    [136]

    Sung W, Lee H, Lee H, et al. Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection [J]. Energy Sources, 2002, 24(6): 499-512. doi: 10.1080/00908310290086527

    [137]

    Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US, 5261490[P]. 1992-03-03.

    [138]

    Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates-Phase equilibria for CO2-CH4 mixed hydrate system [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. doi: 10.1252/jcej.29.478

    [139]

    Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. doi: 10.1002/aic.11294

    [140]

    周薇, 樊栓狮, 梁德青, 等. 二氧化碳压力对甲烷水合物置换速率的影响[J]. 武汉理工大学学报: 交通科学与工程版, 2008, 32(3):547-550

    ZHOU Wei, FAN Shuanshi, LIANG Deqing, et al. Influence of pressure to replacement of CH4 in the hydrate by use of CO2 [J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2008, 32(3): 547-550.

    [141]

    Yuan Q, Sun C Y, Yang X, et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor [J]. Energy, 2012, 40(1): 47-58. doi: 10.1016/j.energy.2012.02.043

    [142]

    Komatsu H, Ota M, Smith R L Jr, et al. Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies - Properties and kinetics [J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4): 517-537. doi: 10.1016/j.jtice.2013.03.010

    [143]

    李遵照, 郭绪强, 陈光进, 等. CO2置换CH4水合物中CH4的实验和动力学[J]. 化工学报, 2007, 58(5):1197-1203 doi: 10.3321/j.issn:0438-1157.2007.05.022

    LI Zunzhao, GUO Xuqiang, CHEN Guangjin, et al. Experimental and kinetic studies on methane replacement from methane hydrate formed in SDS system by using pressurized CO2 [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1197-1203. doi: 10.3321/j.issn:0438-1157.2007.05.022

    [144]

    Bai D S, Zhang X R, Chen G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy and Environmental Science, 2012, 5(5): 7033-7041. doi: 10.1039/c2ee21189k

    [145]

    Wang X H, Sun Y F, Wang Y F, et al. Gas production from hydrates by CH4-CO2/H2 replacement [J]. Applied Energy, 2017, 188: 305-314. doi: 10.1016/j.apenergy.2016.12.021

    [146]

    Merey S, Al-Raoush R I, Jung J, et al. Comprehensive literature review on CH4-CO2 replacement in microscale porous media [J]. Journal of Petroleum Science and Engineering, 2018, 171: 48-62. doi: 10.1016/j.petrol.2018.07.032

    [147]

    刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5):12-26

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice [J]. Marine Geology and Quaternary Geology, 2017, 37(5): 12-26.

    [148]

    Collett T S, Boswell R, Lee M W, et al. Evaluation of long-term gas-hydrate-production testing locations on the Alaska north slope [J]. SPE Reservoir Evaluation and Engineering, 2012, 15(2): 243-264. doi: 10.2118/155504-PA

    [149]

    Rose K, Boswell R, Collett T. Mount elbert gas hydrate stratigraphic test well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy [J]. Marine and Petroleum Geology, 2011, 28(2): 311-331. doi: 10.1016/j.marpetgeo.2010.02.001

    [150]

    李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214

    LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 204-214.

    [151]

    周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气, 2014, 26(5):1-7

    ZHOU Shouwei, CHEN Wei, LI Qingping. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water [J]. China Offshore Oil and Gas, 2014, 26(5): 1-7.

    [152]

    周守为, 赵金洲, 李清平, 等. 全球首次海洋天然气水合物固态流化试采工程参数优化设计[J]. 天然气工业, 2017, 37(9):1-14 doi: 10.3787/j.issn.1000-0976.2017.09.001

    ZHOU Shouwei, ZHAO Jinzhou, LI Qingping, et al. Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization [J]. Natural Gas Industry, 2017, 37(9): 1-14. doi: 10.3787/j.issn.1000-0976.2017.09.001

    [153]

    赵金洲, 周守为, 张烈辉, 等. 世界首个海洋天然气水合物固态流化开采大型物理模拟实验系统[J]. 天然气工业, 2017, 37(9):15-22 doi: 10.3787/j.issn.1000-0976.2017.09.002

    ZHAO Jinzhou, ZHOU Shouwei, ZHANG Liehui, et al. The first global physical simulation experimental systems for the exploitation of marine natural gas hydrates through solid fluidization [J]. Natural Gas Industry, 2017, 37(9): 15-22. doi: 10.3787/j.issn.1000-0976.2017.09.002

    [154]

    伍开松, 王燕楠, 赵金洲, 等. 海洋非成岩天然气水合物藏固态流化采空区安全性评价[J]. 天然气工业, 2017, 37(12):81-86 doi: 10.3787/j.issn.1000-0976.2017.12.012

    WU Kaisong, WANG Yannan, ZHAO Jinzhou, et al. Safety evaluation on the solid fluidized goaf zone in marine non-diagenetic hydrate reservoirs [J]. Natural Gas Industry, 2017, 37(12): 81-86. doi: 10.3787/j.issn.1000-0976.2017.12.012

    [155]

    周守为, 陈伟, 李清平, 等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4):1-8

    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area [J]. China Offshore Oil and Gas, 2017, 29(4): 1-8.

    [156]

    张旭辉, 鲁晓兵, 刘乐乐. 天然气水合物开采方法研究进展[J]. 地球物理学进展, 2014, 29(2):858-869 doi: 10.6038/pg20140252

    ZHANG Xuhui, LU Xiaobing, LIU Lele. Advances in natural gas hydrate recovery methods [J]. Progress in Geophysics, 2014, 29(2): 858-869. doi: 10.6038/pg20140252

    [157]

    张旭辉, 鲁晓兵, 李鹏. 天然气水合物开采方法的研究综述[J]. 中国科学, 2019, 49(3):034604

    ZHANG Xuhui, LU Xiaobing, LI Peng. A comprehensive review in natural gas hydrate recovery method [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(3): 034604.

    [158]

    张旭辉, 鲁晓兵. 一种新的海洋浅层水合物开采法: 机械-热联合法[J]. 力学学报, 2016, 48(5):1238-1246 doi: 10.6052/0459-1879-15-112

    ZHANG Xuhui, LU Xiaobing. A new exploitation method for gas hydrate in shallow stratum: Mechanical-thermal method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1238-1246. doi: 10.6052/0459-1879-15-112

  • 加载中

(11)

(2)

计量
  • 文章访问数:  6072
  • PDF下载数:  189
  • 施引文献:  0
出版历程
收稿日期:  2021-01-06
修回日期:  2021-03-22
刊出日期:  2022-02-28

目录