中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探

尚文郁, 孙静轶, 谢曼曼, 岑况, 蔡泽, 战楠, 凌媛, 孙青. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009
引用本文: 尚文郁, 孙静轶, 谢曼曼, 岑况, 蔡泽, 战楠, 凌媛, 孙青. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009
SHANG Wenyu, SUN Jingyi, XIE Manman, CEN Kuang, CAI Ze, ZHAN Nan, LING Yuan, SUN Qing. Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009
Citation: SHANG Wenyu, SUN Jingyi, XIE Manman, CEN Kuang, CAI Ze, ZHAN Nan, LING Yuan, SUN Qing. Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009

基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探

  • 基金项目:
    国家自然科学基金面上项目“末次冰盛期以来中—缅热带玛珥湖古温度重建”(41877301);国家自然科学基金项目青年基金项目“基于红外光谱的金川泥炭中有机碳、腐殖酸、木质素等古气候替代指标快速分析方法及在古气候研究中的应用”(41402325);中国地质科学院基本科研业务费项目“湖泊沉积物中记录区域健康风险评价的生态环境指标ACL的研究”(CSJ-2021-09)
详细信息
    作者简介: 尚文郁,博士研究生,助理研究员,从事环境地球化学及气候替代指标研究。E-mail: shangwenyu@cags.ac.cn
    通讯作者: 岑况,博士,教授,从事地球化学研究。E-mail: cenkuang@cugb.edu.cn 孙青,博士,研究员,从事全球气候变化研究。E-mail: sunqing1616@yahoo.com
  • 中图分类号: O657.63

Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study

More Information
  • 湖泊沉积物中直链脂肪族化合物(MCCs)对气候变化响应敏感,环境条件的变化可促使MCCs在游离态和结合态间发生转化,是古气候重建的重要生物标志物。以往研究中对样品前处理通常采用混合溶剂提取法得到MCCs游离态组分,而以化学键合、物理吸附等形式赋存的结合态组分无法通过溶剂提取,不能获取结合态组分特征对气候环境变化的指示信息。本文将热裂解这一有机质高效分解技术与气相色谱-质谱(GC-MS)联用,实现了对内蒙古伊和沙日乌苏湖泊沉积物有机质组成的精细刻画,并识别、分析了共计3类、71项结合态MCCs化合物。结果表明:热解温度是影响热裂解-气相色谱-质谱(Py-GC/MS)分析沉积物样品中结合态MCCs分布特征的主要因素,450℃以下热解能量较低导致结合态MCCs解析不充分,550℃和650℃下各类结合态MCCs(含正构烷烃、正构烯烃及α-正构脂肪酮)充分解析,可经GC-MS实现在线分离、识别;随着热解温度升高,裂解产物中MCCs平均链长趋于降低,过高的裂解能量影响了产物中MCCs化合物链长特征对气候变化指示的敏感性。经研究各类MCCs分布特征发现,550℃下正构烷烃平均链长特征与传统气候替代指标游离态正构烷烃单体碳同位素δ13C27~33具有较好的相关性(R=0.83)。结合态正构烷烃ACL25~31指标响应了区域有效降水变化特征,识别了区域内5.6ka、3.9ka前后的干旱期,反映了东亚夏季风强度变化,对应了北半球中纬度有效降水变化。

  • 加载中
  • 图 1  不同类型MCCs化合物选择离子色谱图及质谱裂解特征

    Figure 1. 

    图 2  样品YH-7在不同热解温度下(350~650℃)对应的裂解产物色谱图

    Figure 2. 

    图 3  样品YH-8不同热解温度(350~650℃)对应MCCs化合物色谱图

    Figure 3. 

    图 4  伊和沙日乌苏沉积物样品YH-3(相对湿润期)、YH-11(相对干旱期)中结合态MCCs(a1-3、b1-3)和游离态(a-4、b-4)MCCs分布图

    Figure 4. 

    图 5  结合态正构烷烃ACL值与δ13C27~335.7ka以来变化趋势

    Figure 5. 

    表 1  热解产物中MCCs化合物的识别

    Table 1.  Identification and classification of MCCs compounds in pyrolytic products

    化合物序号 化合物名称 分子式 特征离子(m/z) 保留时间(min)
    1~25 C9~C33正构烷烃 CnH2n+1 57 17.401~77.019
    26~48 C9~C31正构烯烃 CnH2n 55 16.942~73.203
    49~71 C9~C31 α-正构脂肪酮 CnH2nO 58 16.171~73.479
    下载: 导出CSV

    表 2  不同热解温度下MCCs指标与正构烷烃单体碳同位素δ13C27~33的相关性

    Table 2.  Correlation coefficients between indexes of bound MCCs compounds and δ13C27-33 of n-alkanes under different pyrolysis temperatures

    热解温度(℃) ACL指标 样品数量(n) 相关系数(R) p
    正构烷烃ACL25~31 11 -0.60 0.05
    450 正构烯烃ACL24~30 11 0.51 0.11
    α-正构脂肪酮ACL17~25 10 -0.52 0.12
    正构烷烃ACL25~31 11 0.83 < 0.01
    550 正构烯烃ACL24~30 11 0.69 < 0.05
    α-正构脂肪酮ACL17~25 10 -0.78 < 0.01
    正构烷烃ACL9~33 11 -0.55 0.08
    650 正构烯烃ACL10~20 11 -0.42 0.20
    α-正构脂肪酮ACL17~25 10 -0.66 < 0.05
    注:ACL=Σ(i×Ci)/ΣCi
    下载: 导出CSV
  • [1]

    Naafs B D A, Inglis G N, Blewett J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review[J]. Global and Planetary Change, 2019, 179: 57-79. doi: 10.1016/j.gloplacha.2019.05.006

    [2]

    Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment[J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4

    [3]

    Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K. Ⅰ: Source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E

    [4]

    Sun Q, Chu G Q, Liu M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116(G1): 79-89.

    [5]

    Chu G Q, Sun Q, Xie M M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China[J]. Quaternary Science Reviews, 2014, 102: 85-95. doi: 10.1016/j.quascirev.2014.08.008

    [6]

    Jambrina-Enríquez M, Sachse D, Valero-Garcés B L. A deglaciation and Holocene biomarker-based recon-struction of climate and environmental variability in NW Iberian Peninsula: The Sanabria Lake sequence[J]. Journal of Paleolimnology, 2016, 56(1): 49-66. doi: 10.1007/s10933-016-9890-6

    [7]

    Zhang Y, Meyers P A, Liu X, et al. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30. doi: 10.1016/j.quascirev.2016.09.016

    [8]

    Yan Y, Zhao B, Xie L, et al. Trend reversal of soil n-alkane carbon preference index (CPI) along the precipitation gradient and its paleoclimatic implication[J]. Chemical Geology, 2021, 581: 1-10.

    [9]

    Xie S, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2849-2862. doi: 10.1016/j.gca.2003.08.025

    [10]

    Barakat A O, Rullk tter J. Extractable and bound fatty acids in core sediments from the N rdlinger Ries, southern Germany[J]. Fuel, 1995, 74(3): 416-425. doi: 10.1016/0016-2361(95)93476-T

    [11]

    王江涛, 杨庶, 谭丽菊, 等. 浙江南部近海沉积物柱状样中脂类生物标志物的组成及形态分布[J]. 海洋学报, 2011, 33(5): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201105011.htm

    Wang J T, Yang S, Tan L J, et al. Composition and form distribution of lipids biomarkers in a sediment core from southern coastal area of Zhejiang Province[J]. Marine Sciences, 2011, 33(5): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201105011.htm

    [12]

    Kaal J, Lantes-Suárez O, Martínez Cortizas A, et al. How useful is pyrolysis-GC/MS for the assessment of molecular properties of organic matter in Archaeological Pottery Matrix? An exploratory case study from North-West Spain[J]. Archaeometry, 2014, 56: 187-207. doi: 10.1111/arcm.12057

    [13]

    Li J, Chen Y, Yang H, et al. The correlation of feedstock and bio-oil compounds distribution[J]. Energy Fuels, 2017, 31(7): 7093-7100. doi: 10.1021/acs.energyfuels.7b00545

    [14]

    王娜, 张学芹, 雷勇, 等. 故宫太和殿护板灰有机组分的红外光谱及热裂解-气相色谱/质谱分析[J]. 文物保护与考古科学, 2018, 30(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-WWBF201802014.htm

    Wang N, Zhang X Q, Lei Y, et al. FTIR and Py-GC/MS analysis of organic materials used in the guard board mortar of Taihe Dian, the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-WWBF201802014.htm

    [15]

    van der Kaaden A, Boon J J, Haverkamp J. The analytical pyrolysis of carbohydrates. 2-Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry[J]. Biomedical Mass Spectrometry, 1984, 11(9): 486-492. doi: 10.1002/bms.1200110910

    [16]

    Genuit W, Boon J J. Pyrolysis-gas chromatography-photoionization-mass spectrometry, a new approach in the analysis of macromolecular materials[J]. Journal of Analytical and Applied Pyrolysis, 1985, 8: 25-40. doi: 10.1016/0165-2370(85)80012-7

    [17]

    van der Heijden E, Boon J, Rasmussen S, et al. Sphagnum acid and its decarboxylation product isopropenylphenol as biomarkers for fossilised[J]. Ancient Biomolecules, 1997, 1(2): 93-93.

    [18]

    Schellekens J, Bradley J A, Kuyper T W, et al. The use of plant-specific pyrolysis products as biomarkers in peat deposits[J]. Quaternary Science Reviews, 2015, 123: 254-264. doi: 10.1016/j.quascirev.2015.06.028

    [19]

    Schellekens J, Buurman P, Pontevedra-Pombal X. Selecting parameters for the environmental interpretation of peat molecular chemistry-A pyrolysis-GC/MS study[J]. Organic Geochemistry, 2009, 40(6): 678-691. doi: 10.1016/j.orggeochem.2009.03.006

    [20]

    Ninnes S, Tolu J, Meyer-Jacob C, et al. Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1423-1438. doi: 10.1002/2016JG003715

    [21]

    Kaal J, Cortizas A M, Rydberg J, et al. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssj n, Sweden[J]. Organic Geochemistry, 2015, 83-84: 253-262. doi: 10.1016/j.orggeochem.2015.04.005

    [22]

    Sanjurjo-Sánchez J, Kaal J, Fenollós J L M. Organic matter from bevelled rim bowls of the Middle Euphrates: Results from molecular characterization using pyrolysis-GC-MS[J]. Microchemical Journal, 2018, 141: 1-6. doi: 10.1016/j.microc.2018.05.001

    [23]

    Melenevskii V, Leonova G, Bobrov V, et al. Transformation of organic matter in the Holocene sediments of Lake Ochki (South Baikal region): Evidence from pyrolysis data[J]. Geochemistry International, 2015, 53(10): 903-921. doi: 10.1134/S0016702915080054

    [24]

    Kumar M, Boski T, Lima-Filho F P, et al. Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary[J]. Quaternary International, 2018, 476: 34-45. doi: 10.1016/j.quaint.2018.03.006

    [25]

    Kaal J, Cortizas A M, Eckmeier E, et al. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: A case study from Campo Lameiro (NW Spain)[J]. Journal of Archaeological Science, 2008, 35(8): 2133-2143. doi: 10.1016/j.jas.2008.01.013

    [26]

    Carr A S, Boom A, Chase B M, et al. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: An example from the southern Cape coastline of South Africa[J]. Journal of Paleolimnology, 2010, 44(4): 947-961. doi: 10.1007/s10933-010-9466-9

    [27]

    Li Z, Zhang Z, Xue Z, et al. Molecular fingerprints of soil organic matter in a typical freshwater wetland in northeast China[J]. Chinese Geographical Science, 2019, 29(4): 700-708. doi: 10.1007/s11769-019-1062-y

    [28]

    Lu X, Ma S, Chen Y, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China[J]. Biomolecules, 2018, 8(154): 1-12.

    [29]

    Li Z, Zhang Z, Li M, et al. Molecular fingerprints of soil organic carbon in wetlands covered by native and non-native plants in the Yellow River Delta[J]. Wetlands, 2020(2): 1-10.

    [30]

    Chen Q, Wu Y, Lei T, et al. Study on the fingerprints of soil organic components in Alpine grassland based on Py-GC-MS/MS technology[J]. Acta Ecologica Sinica, 2018, 38(8): 2864-2873.

    [31]

    Xie M, Sun Q, Dong H, et al. n-alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J]. The Holocene, 2020, 30(10): 1451-1461. doi: 10.1177/0959683620932968

    [32]

    丛浦珠, 苏克曼. 分析化学手册: 质谱分析(第九分册)[M]. 北京: 化学工业出版社, 2000.

    Cong P Z, Su K M. Handbook of analytical chemistry: Mass spectrometry (Volume 9)[M]. Beijing: Chemical Industry Press, 2000.

    [33]

    McClymont E L, Bingham E M, Nott C J, et al. Pyrolysis GC-MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat[J]. Organic Geochemistry, 2011, 42(11): 1420-1435. doi: 10.1016/j.orggeochem.2011.07.004

    [34]

    Schellekens J, Buurman P. n-alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation[J]. Geoderma, 2011, 164(3-4): 112-121. doi: 10.1016/j.geoderma.2011.05.012

    [35]

    Moldoveanu S C. Pyrolysis GC/MS, present and future (recent past and present needs)[J]. Journal of Microcolumn Separations, 2001, 13(3): 102-125. doi: 10.1002/mcs.1028

    [36]

    Zhang H, Liao W, Zhou X, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 1-10.

    [37]

    Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil As a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770-11778.

    [38]

    Cui D, Li J, Zhang X, et al. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 1-10.

    [39]

    Fabbri D, Adamiano A, Falini G, et al. Analytical pyro-lysis of dipeptides containing proline and amino acids with polar side chains. Novel 2, 5-diketopiperazine markers in the pyrolysates of proteins[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 145-155. doi: 10.1016/j.jaap.2012.02.001

    [40]

    Zhu R, Versteegh G J M, Hinrichs K U. Detection of microbial biomass in subseafloor sediment by pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 175-180. doi: 10.1016/j.jaap.2016.02.002

    [41]

    Lara-Gonzalo A, Kruge M A, Lores I, et al. Pyrolysis GC-MS for the rapid environmental forensic screening of contaminated brownfield soil[J]. Organic Geochemistry, 2015, 87: 9-20. doi: 10.1016/j.orggeochem.2015.06.012

    [42]

    Kaal J, Martinez C A, Mateo M A, et al. Deci-phering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting[J]. Science of the Total Environment, 2020, 742: 1-19.

    [43]

    Zúñiga D, Kaal J, Villacieros-Robineau N, et al. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean): Comparison between elemental, isotopic and molecular indicators[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 114-122. doi: 10.1016/j.jaap.2019.01.016

    [44]

    Kruge M A, Permanyer A. Application of pyrolysis-GC/MS for rapid assessment of organic contamination in sediments from Barcelona Harbor[J]. Organic Geochemistry, 2004, 35(11): 1395-1408.

    [45]

    Lewis J M T, Najorka J, Watson J S, et al. The search for Hesperian organic matter on Mars: Pyrolysis studies of sediments rich in sulfur and iron[J]. Astrobiology, 2018, 18(4): 454-464. doi: 10.1089/ast.2017.1717

    [46]

    Zhang Y, Yang K, Du J, et al. Chemical characterization of fractions of dissolved humic substances from a marginal sea-A case from the Southern Yellow Sea[J]. Journal of Oceanology and Limnology, 2018, 36(2): 238-248. doi: 10.1007/s00343-017-6202-6

    [47]

    Kumar M, Boski T, González-Vila F J, et al. Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa Lagoon (South Portugal)[J]. Environmental Science and Pollution Research, 2020, 27(23): 28962-28985. doi: 10.1007/s11356-020-09235-9

    [48]

    Tolu J, Gerber L, Boily J F, et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multi-variate curve resolution: A promising analytical tool in (paleo)limnology[J]. Analytica Chimica Acta, 2015, 880: 93-102. doi: 10.1016/j.aca.2015.03.043

    [49]

    Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1619-1626. doi: 10.1016/0016-7037(82)90318-0

    [50]

    Kaal J. Analytical pyrolysis in marine environments revi-sited[J]. Analytical Pyrolysis Letters, 2019, 6: 1-16.

    [51]

    Wang Q, Wang X M, Shuo P. Study on the structure, pyrolysis kinetics, gas release, reaction mechanism, and pathways of Fushun oil shale and kerogen in China[J]. Fuel Processing Technology, 2022, 225(107058): 1-11.

    [52]

    Boateng A A, Hicks K B, Vogel K P. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity[J]. Journal of Analytical & Applied Pyrolysis, 2006, 75(2): 55-64.

    [53]

    Liu H, Yuan P, Liu D, et al. Pyrolysis behaviors of organ-ic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216. doi: 10.1016/j.clay.2017.12.028

    [54]

    Faure P, Jeanneau L, Lannuzel F. Analysis of organic matter by flash pyrolysis-gas chromatography-mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature[J]. Organic Geochemistry, 2006, 37(12): 1900-1912. doi: 10.1016/j.orggeochem.2006.09.008

    [55]

    Zhang J, Wu C, Hou W, et al. Biological calcium car-bonate with a unique organic-inorganic composite structure to enhance biochar stability[J]. Environmental Science: Processes & Impacts, 2021, 23(11): 1747-1758.

    [56]

    Meyers P A. Organic geochemical proxies of paleoceano-graphic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1

    [57]

    沈吉, 刘兴起, Matsumoto R, 等. 晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J]. 中国科学: 地球科学, 2004, 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm

    Shen J, Liu X Q, Matsumoto R, et al. Multi index and high-resolution paleoclimate evolution of sediments in Qinghai Lake since late glacial period[J]. Science in China Series D: Earth Sciences, 2004, 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm

    [58]

    Zhang J R, Jia Y L, Lai Z P, et al. Holocene evo-lution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating[J]. Holocene, 2011, 21(8): 1261-1268. doi: 10.1177/0959683611405232

    [59]

    Sun Q, Zhou J, Shen J, et al. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China[J]. Science in China Series D: Earth Sciences, 2006, 49(9): 968-981. doi: 10.1007/s11430-006-0968-2

    [60]

    温锐林, 肖举乐, 常志刚, 等. 全新世呼伦湖区植被和气候变化的孢粉记录[J]. 第四纪研究, 2010, 30(6): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006005.htm

    Wen R L, Xiao J L, Chang Z G, et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north-eastern Inner Mongolia[J]. Quaternary Sciences, 2010, 30(6): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006005.htm

    [61]

    陈发虎, 吴薇, 朱艳, 等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 2004, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200401000.htm

    Chen F H, Wu W, Zhu Y, et al. Lake records of middle Holocene drought events in Alxa Plateau[J]. Chinese Science Bulletin, 2004, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200401000.htm

    [62]

    Nierop K, Jansen B, Hageman J A, et al. The complementarity of extractable and ester-bound lipids in a soil profile under pine[J]. Plant & Soil, 2006, 286(1-2): 269-285.

    [63]

    Angst G, Cajthaml T, Angst Š, et al. Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments[J]. Organic Geochemistry, 2017, 113: 97-104. doi: 10.1016/j.orggeochem.2017.08.004

    [64]

    Jia Q H, Sun Q, Xie M M, et al. Normal alkane distributions in soil samples along a Lhasa-Bharatpur Transect[J]. Acta Geologica Sinica (English Edition), 2016, 90(2): 738-748. doi: 10.1111/1755-6724.12701

    [65]

    Pu Y, Zhang H C, Lei G L, et al. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3[J]. Science China (Earth Sciences), 2010, 53(6): 863-870. doi: 10.1007/s11430-010-0075-2

    [66]

    Baker A, Routh J, Roychoudhury A N. n-alkan-2-one biomarkers as a proxy for palaeoclimate reconstruction in the Mfabeni Fen, South Africa[J]. Organic Geochemistry, 2018, 120: 75-85. doi: 10.1016/j.orggeochem.2018.03.001

    [67]

    Zhang Y, Huang X, Wang R, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544(119622): 1-17.

    [68]

    Chen L, Zhou W, Zhang Y, et al. Postglacial floral and climate changes in southeastern China recorded by distributions of n-alkan-2-ones in the Dahu sediment-peat sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538(109448): 1-8.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  953
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2022-04-29
录用日期:  2022-05-30
刊出日期:  2022-09-28

目录