-
摘要:
土壤重金属污染已是全球性环境问题。因此,修复重金属污染土壤对于降低重金属毒害风险、维护环境健康和恢复生态意义重大。与其他土壤重金属污染修复技术相比,植物修复因其绿色环保、成本低廉,操作简单等优点受到广泛关注。本文概述了植物修复技术的主要作用方式,讨论了微生物法、化学法和物理法协同植物修复的作用机制和研究现状,并对重金属污染土壤的植物修复及联合修复法未来的研究方向进行了展望,以期为这一绿色技术的广泛应用提供参考。
Abstract:Soil heavy metal pollution has been a global environmental problem. Therefore, remediation of heavy metal contaminated soil is of great significance to reduce the risk of heavy metal poisoning, maintain environmental health and restore ecology. Compared with other soil heavy metal pollution remediation technologies, phytoremediation has attracted wide attention due to its advantages of environmental friendliness, low cost and simple operation. This paper summarizes the main role of phytoremediation technology, and the mechanism and research status of synergistic phytoremediation by microbiological, chemical and physical methods are discussed. In addition, the future research directions of phytoremediation and combined remediation of heavy metal contaminated soil are prospected in order to provide reference for the wide application of this green technology.
-
-
[1] CHAOUA S, BOUSSAA S, GHARMALI A E, et al. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco[J]. Journal of the Saudi Society of Agricultural Sciences, 2019, 18(4): 429-436. doi: 10.1016/j.jssas.2018.02.003
[2] 邵啸. 浅析土壤重金属污染的现状以及治理[J]. 资源节约与环保, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061
[3] BU-OLAYAN A H, THOMAS B V. Translocation and bioaccumulation of trace metals in desert plants of Kuwait governorates[J]. Research Journal of Environmental ences, 2009, 3(5): 581-587.
[4] CHAFFAI R, KOYAMA H J A I B R. Heavy metal tolerance in Arabidopsis thaliana[J]. Advances in Botanical Research, 2011, 60: 1-49. http://www.sciencedirect.com/science/article/pii/B9780123858511000019
[5] MONNI S, SALEMAA M, MILLAR N. The tolerance of empetrum nigrum to copper and nickel[J]. Environmental Pollution, 2000, 109(2): 221-229. doi: 10.1016/S0269-7491(99)00264-X
[6] UL HASSAN Z, ALI S, RIZWAN M, et al. Role of zinc in alleviating heavy metal stress[C]//Essential plant nutrients. City: Springer, 2017: 351-366.
[7] LOPEZ S, PIUTTI S, VALLANCE J, et al. Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale[J]. Soil Biology and Biochemistry, 2017, 114: 121-130. doi: 10.1016/j.soilbio.2017.07.010
[8] CHUANYU, CHANG, RUNSHENG, et al. Bioaccumulation and health risk assessment of heavy metals in the soil-rice system in a typical seleniferous area, central China[J]. Environmental Toxicology & Chemistry, 2019, 38(7): 1577-1584. http://www.ncbi.nlm.nih.gov/pubmed/30994945
[9] SHARMA A, NAGPAL A K. Soil amendments: a tool to reduce heavy metal uptake in crops for production of safe food[J]. Reviews in Environmental ence & Bio/technology, 2018, 17(1): 187-203.
[10] KHAN S, CAO Q, ZHENG Y, et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China[J]. Environmental Pollution, 2008, 152(3): 686-692. doi: 10.1016/j.envpol.2007.06.056
[11] CUELLO S, RAMOS S, MADRID Y, et al. Differential protein expression of hepatic cells associated with MeHg exposure: deepening into the molecular mechanisms of toxicity[J]. Analytical and Bioanalytical Chemistry, 2012, 404(2): 315-324. doi: 10.1007/s00216-012-6042-3
[12] LIN Y C, HSU S C, CHOU C C K, et al. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals[J]. Environmental Pollution, 2016, 208: 284-293. doi: 10.1016/j.envpol.2015.07.044
[13] BLAYLOCK A J, SEYMOUR R S. Diaphragmatic nets prevent water invasion of gas canals in Nelumbo nucifera[J]. Aquatic Botany, 2000, 67(1): 53-59. doi: 10.1016/S0304-3770(99)00087-X
[14] TREVORS M H S T. Phytoremediation[J]. Water, Air, & Soil Pollution, 2010, 205(1): 61-63.
[15] WON K J. Removing environmental organic pollutants with bioremediation and phytoremediation[J]. Biotechnology letters, 2014, 36(6): 1129-1139. doi: 10.1007/s10529-014-1466-9
[16] VARA PRASAD M N, MARIA D O F, HELENA. Metal hyperaccumulation in plants-Biodiversity prospecting for phytoremediation technology[J]. Electronic J Biotech, 2003, 6(3): 189-198.
[17] ETIM E. Phytoremediation and its mechanisms: A review[J]. Int J Environ Bioenergy, 2012, 2: 120-136. http://modernscientificpress.com/Journals/ViewArticle.aspx?gkN1Z6Pb60HNQPymfPQlZIsaO1oMajYkT5i8/SIthV/i1509l3XqlgX4XSDiXBec
[18] WANI S H, SANGHERA G S, ATHOKPAM H, et al. Phytoremediation: Curing soil problems with crops[J]. African Journal of Agricultural Research, 2012, 7: 3991-4002. http://www.academicjournals.org/app/webroot/article/article1380881180_Wani%20et%20al.pdf
[19] GHAVRI S V, SINGH R P. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil[J]. Journal of Environmental Biology, 2012, 33(2): 207-214. http://www.researchgate.net/profile/Rana_Singh4/publication/232006208_Growth_biomass_production_and_remediation_of_copper_contamination_by_Jatropha_curcas_plant_in_industrial_wasteland_soil/links/0a85e52d51a1f33d93000000
[20] BROOKS R R, LEE J, REEVES R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. 1977, 7: 49-57.
[21] RASCIO N, NAVARI-IZZO F J P S. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting[J]. Plant science: an international journal of experimental plant biology, 2011, 180(2): 169-181. http://www.onacademic.com/detail/journal_1000035433494010_b8d3.html
[22] BAKER A J, BROOKS R J B. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126. http://www.researchgate.net/profile/Alan_Baker2/publication/247713966_Terrestrial_Higher_Plants_Which_Hyperaccumulate_Metallic_Elements_A_Review_of_Their_Distribution_E/links/004635368aaa870046000000.pdf?ev=pub_ext_doc_dl_meta
[23] LAHORI, ALTAF, HUSSAIN, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicology and Environmental Safety, 2016, 126(4): 111-121. http://www.researchgate.net/profile/Dr_Amanullah_Mahar/publication/288917913_Challenges_and_opportunities_in_the_phytoremediation_of_heavy_metals_contaminated_soils_A_review/links/568b9de008ae1975839f86e0.pdf
[24] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2016, 182: 247-268. http://www.onacademic.com/detail/journal_1000039744965410_41a8.html
[25] LAGO-VILA M, ARENAS-LAGO D, RODRIGUEZ-SEIJO A, et al. Ability of cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation[J]. Journal of Environmental Management, 2019, 235: 152-160. http://www.onacademic.com/detail/journal_1000041589275799_3264.html
[26] HAZRAT, ALI, AND, et al. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. doi: 10.1016/j.chemosphere.2013.01.075
[27] SUBHASHINI V, SWAMY A J. Phytoremediation of Pb and Ni contaminated soils using catharanthus roseus (L. )[J]. Universal Journal of Environmental Research & Technology, 2013, 3(4). http://www.environmentaljournal.org/3-4/ujert-3-4-7.pdf
[28] LI H, LUO N, LI Y W, et al. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224(5): 622-630. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0269749116321376&originContentFamily=serial&_origin=article&_ts=1492790981&md5=4780ffbed172784edda4455805bfa1b8
[29] BAE J, BENOIT D L, WATSON A K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes[J]. Environmental Pollution, 2016, 213(6): 112-118.
[30] A N S, B M I, C M R S, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116
[31] WANG S T, DONG Q, WANG Z L. Differential effects of citric acid on cadmium uptake and accumulation between tall fescue and Kentucky bluegrass[J]. Ecotoxicol Environ Saf, 2017, 145(11): 200-206. http://www.ncbi.nlm.nih.gov/pubmed/28734223
[32] IVANO B, J? RG L, S G-G M, et al. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil[J]. Environmental Pollution, 2008, 152(3): 686-692. doi: 10.1016/j.envpol.2007.06.056
[33] HASHIMOTO Y, KANKE Y. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations[J]. Environmental Pollution, 2018, 238(7): 617-623. http://europepmc.org/abstract/MED/29609173
[34] URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 1-8. doi: 10.1186/1939-8433-5-1
[35] GHOSH M, SINGH S P. A review on phytoremediation of heavy metals and utilization of its byproducts[J]. Applied Ecology & Environmental Research, 2005, 3(1): 1-18. http://www.thaiscience.info/Journals/Article/AJEE/10262422.pdf
[36] JADIA C D, FULEKAR M H. Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant[J]. Environmental Engineering & Management Journal, 2008, 7(5): 547-558. http://dx.doi.org/10.30638/eemj.2008.078
[37] GóMEZ-SAGASTI M T, ALKORTA I, BECERRIL J M, et al. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation[J]. Water, Air, & Soil Pollution, 2012, 223(6): 3249-3262. http://www.onacademic.com/detail/journal_1000034859623910_2b0f.html
[38] ADREES M, ALI S, RIZWAN M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review[J]. Ecotoxicol Environ Saf, 2015, 119(9): 186-197. http://www.researchgate.net/profile/Muhammad_Rizwan16/publication/276308758_Mechanisms_of_silicon-mediated_alleviation_of_heavy_metal_toxicity_in_plants_A_review/links/555effac08ae9963a114506e.pdf
[39] BHARGAVA A, CARMONA F F, BHARGAVA M, et al. Approaches for enhanced phytoextraction of heavy metals[J]. Journal of Environmental Management, 2012, 105: 103-120. http://www.onacademic.com/detail/journal_1000035055847210_9e2c.html
[40] SHEORAN V, SHEORAN A S, POONIA P. Factors affecting phytoextraction: A Review[J]. Pedosphere, 2016, 26(2): 148-166. doi: 10.1016/S1002-0160(15)60032-7
[41] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7): 869-881. doi: 10.1016/j.chemosphere.2013.01.075
[42] OVEKA M, TAKá T. Managing heavy metal toxicity stress in plants: biological and biotechnological tools[J]. Biotechnology Advances, 2014, 32(1): 73-86. doi: 10.1016/j.biotechadv.2013.11.011
[43] HE C, ZHAO Y, WANG F, et al. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: tolerance, accumulation and subcellular distribution[J]. Chemosphere, 2020, 252: 126471. doi: 10.1016/j.chemosphere.2020.126471
[44] ZHANG X, LI M, YANG H, et al. Physiological responses of suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals[J]. Journal of Environmental Management, 2018, 223(10): 132-139. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0301479718306674&originContentFamily=serial&_origin=article&_ts=1529028859&md5=422b332da33964826f5e52b84ad97f02
[45] HUANG C C, CHEN M W, HSIEH J L, et al. Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation[J]. Applied Microbiology and Biotechnology, 2006, 72(1): 197-205. doi: 10.1007/s00253-005-0250-0
[46] GRZEGóRSKA A, RYBARCZYK P, ROGALA A, et al. Phytoremediation-from environment cleaning to energy generation-current status and future perspectives[J]. Energies, 2020, 13(11): 1-43. http://www.researchgate.net/publication/342045119_Phytoremediation-From_Environment_Cleaning_to_Energy_Generation-Current_Status_and_Future_Perspectives
[47] WANG J, FENG X, ANDERSONS C W N, et al. Remediation of mercury contaminated sites-A review[J]. Journal of Hazardous Materials, 2012, 221: 1-18. http://www.researchgate.net/profile/Lihai_Shang/publication/224948712_Remediation_of_mercury_contaminated_sites_-_A_review/links/550a75b30cf20ed529e3328e.pdf
[48] LIPHADZI M S, KIRKHAM M B, MUSIL C F. Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment[J]. South African Journal of Botany, 2005, 71(1): 24-37. doi: 10.1016/S0254-6299(15)30145-9
[49] TERRY N, ZAYED A M, SOUZA M P D, et al. Selenium in higher plants[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 2000, 51: 401-432.
[50] BANUELOS G S, MEEK D W. Accumulation of selenium in plants grown on selenium-treated soil[J]. Jenvironqual, 1990, 19(4): 772-777. http://www.onacademic.com/detail/journal_1000040505559110_faad.html
[51] PARMAR S, SINGH V. Phytoremediation approaches for heavy metal pollution: a review[J]. Journal of Plant Science and Ressearch, 2015, 2: 139. http://www.opensciencepublications.com/wp-content/uploads/JPSR-2349-2805-2-135.pdf
[52] HATTAB N, MOTELICAHEINO M, BOURRAT X, et al. Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4 years of aided phytostabilization[J]. Environ Pollut Res Int, 2014, 21(17): 10307-10319. doi: 10.1007/s11356-014-2938-0
[53] GUO P, WANG T, LIU Y, et al. Phytostabilization potential of evening primrose (oenothera glazioviana) for copper-contaminated sites[J]. Environmental ence & Pollution Research International, 2014, 21(1): 631-640. http://www.onacademic.com/detail/journal_1000035940603210_5bb4.html
[54] FARAHAT E A, GALAL T M. Trace metal accumulation by ranunculus sceleratus: implications for phytostabilization[J]. Environmental ence & Pollution Research International, 2018, 25(1-4): 4214-4222.
[55] BONANNO G. Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax[J]. Ecotoxicology and Environmental Safety, 2013, 97: 124-130. doi: 10.1016/j.ecoenv.2013.07.017
[56] OIHANA, BARRUTIA, MARIA, et al. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated mine soil[J]. Journal of Geochemical Exploration: Journal of the Association of Exploration Geochemists, 2014, 145: 181-189. doi: 10.1016/j.gexplo.2014.06.006
[57] PADMAVATHIAMMA P K, LI L Y. Phytoremediation technology: hyper-accumulation metals in plants[J]. Water Air & Soil Pollution, 2007, 184(1-4): 105-126. http://www.onacademic.com/detail/journal_1000034529544310_5417.html
[58] SYLVAIN B, MIKAEL M H, FLORIE M, et al. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols[J]. Catena, 2016, 136: 44-52. doi: 10.1016/j.catena.2015.07.008
[59] LEE S H, JI W H, LEE W S, et al. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings[J]. Journal of Environmental Management, 2014, 139(6): 15-21. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0301479714001091&originContentFamily=serial&_origin=article&_ts=1468115012&md5=2b271676f7d569b677e786f98379df95
[60] RADZIEMSKA M, GUSIATIN Z M, BILGIN A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead[J]. Ecological Engineering, 2017, 102: 490-500. doi: 10.1016/j.ecoleng.2017.02.028
[61] PéREZ-ESTEBAN J, ESCOLáSTICO C, MOLINER A, et al. Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments[J]. Plant and Soil, 2014, 377(1-2): 97-109. doi: 10.1007/s11104-013-1629-9
[62] PAVEL, PB, PUSCHENREITER, et al. Aided phytostabilization using Miscanthus sinensis x giganteus on heavy metal-contaminated soils[J]. SCI TOTAL ENVIRON, 2014, 479-480: 125-131. doi: 10.1016/j.scitotenv.2014.01.097
[63] TANGAHU B V, ABDULLAH S R S, BASRI H, et al. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation[J]. International Journal of Chemical Engineering, 2011, 2011: 1-31. http://www.researchgate.net/file.PostFileLoader.html?id=57ae334393553bd3a1564ba9&assetKey=AS%3A394360081403909%401471034178715
[64] GAIKWAD R, GAVANDE S. Study on removal of pollutants from wastewater by phytoremediation[J]. International Journal of Environment Research, 2020, 2(2): 11-14.
[65] CAADOR I, DUARTE B. Chromium phyto-transformation in salt marshes: The role of halophytes[M]. City: Springer International Publishing, 2015.
[66] 段桂兰, 崔慧灵, 杨雨萍, 扆幸运, 朱冬, 朱永官. 重金属污染土壤中生物间相互作用及其协同修复应用[J]. 生物工程学报, 2020, 36(3): 455-470.
[67] MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2): 248-258. doi: 10.1016/j.biotechadv.2010.12.001
[68] PIRES C, FRANCO A R, PEREIRA S I A, et al. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications[J]. Geomicrobiology Journal, 2017, 34(9): 760-768. doi: 10.1080/01490451.2016.1261968
[69] SOARES M A, MELLO I S, TARGANSKI S K, et al. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110818. doi: 10.1016/j.ecoenv.2020.110818
[70] ABOU-SHANAB R A I, MATHAI P P, SANTELLI C, et al. Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110458. doi: 10.1016/j.ecoenv.2020.110458
[71] NARENDRULA-KOTHA R, NKONGOLO K K. Microbial response to soil Liming of damaged ecosystems revealed by pyrosequencing and phospholipid fatty acid analyses[J]. Plos One, 2017, 12(1): e0168497. doi: 10.1371/journal.pone.0168497
[72] A O A, B H K K, B I Z. Arbuscular mycorrhiza and aspergillus terreus inoculation along with compost amendment enhance the phytoremediation of Cr-rich technosol by solanum lycopersicum under field conditions[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110869. doi: 10.1016/j.ecoenv.2020.110869
[73] MANOJ S R, KARTHIK C, KADIRVELU K, et al. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review[J]. Journal of Environmental Management, 2020, 254: 109779. doi: 10.1016/j.jenvman.2019.109779
[74] SINGH J S, SENEVIRATNE G. Role of rhizospheric microbes in heavy metal uptake by plants[M]. City: Springer International Publishing, 2017.
[75] CHEN Y, YANG W, CHAO Y, et al. Metal-tolerant enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination[J]. Plant and Soil, 2017, 413(1-2): 203-216. doi: 10.1007/s11104-016-3091-y
[76] CHENG, ZHOU, LIN, et al. Bacillus amyloliquefaciens SAY09 Increases cadmium resistance in plants by activation of auxin-mediated signaling pathways[J]. Genes, 2017, 8(7): 173. doi: 10.3390/genes8070173
[77] BAO C, SHA L, YINGJIE W, et al. The effects of the endophytic bacterium pseudomonas fluorescens sasm05 and IAA on the plant growth and cadmium uptake of sedum alfredii hance[J]. Frontiers in Microbiology, 2017, 8: 2538. doi: 10.3389/fmicb.2017.02538
[78] RAJKUMAR, SANDHYA, PRASAD, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnol Advances, 2012, 30(6): 1562-1574. doi: 10.1016/j.biotechadv.2012.04.011
[79] WU Y, MA L, LIU Q, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395: 122661. doi: 10.1016/j.jhazmat.2020.122661
[80] HE X, XU M, WEI Q, et al. Promotion of growth and phytoextraction of cadmium and lead in solanum nigrum L. mediated by plant-growth-promoting rhizobacteria[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111333. doi: 10.1016/j.ecoenv.2020.111333
[81] ORTUZAR M, TRUJILLO M E, ROMáN-PONCE B, et al. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation[J]. Science of The Total Environment, 2020, 739: 139850. doi: 10.1016/j.scitotenv.2020.139850
[82] RAMíREZ V, BAEZ A, LóPEZ P, et al. Chromium hyper-tolerant bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (prosopis laevigata)[J]. Frontiers in Microbiology, 2019, 10: 1833. doi: 10.3389/fmicb.2019.01833
[83] LIU S, YANG B, LIANG Y, et al. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils[J]. Environmental Science and Pollution Research, 2020, 27(10): 1-17. doi: 10.1007/s11356-020-08282-6
[84] LI F, YANG F, CHEN Y, et al. Chemical reagent-assisted phytoextraction of heavy metals by Bryophyllum laetivirens from garden soil made of sludge-ScienceDirect[J]. Chemosphere, 2020, 253: 126574. doi: 10.1016/j.chemosphere.2020.126574
[85] QURESHI F F, ASHRAF M A, RASHEED R, et al. Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L. )[J]. The Science of the Total Environment, 2020, 716(5): 137061. http://www.sciencedirect.com/science/article/pii/S0048969720305714
[86] TIPU M I, ASHRAF M Y, SARWAR N, et al. Growth and physiology of maize (Zea mays L. ) in a nickel-contaminated soil and phytoremediation efficiency using EDTA[J]. Journal of Plant Growth Regulation, 2021, 40: 774-786. doi: 10.1007/s00344-020-10132-1
[87] SUN Y, ZHOU Q, XU Y, et al. The role of EDTA on Cadmium phytoextraction in a cadmium-hyperaccumulator Rorippa globosa[J]. Journal of Environmental Chemistry and Ecotoxicology, 2011, 3(3): 45-51. http://www.researchgate.net/profile/Qixing_Zhou/publication/267829279_The_role_of_EDTA_on_cadmium_phytoextraction_in_a_cadmium-hyperaccumulator_Rorippa_globosa/links/55b442c408aed621de0114b7.pdf
[88] YU H, ZHAN J, ZHANG Q, et al. NTA-enhanced Pb remediation efficiency by the phytostabilizer Athyrium wardii (Hook. ) and associated Pb leaching risk[J]. Chemosphere, 2020, 246: 125815. doi: 10.1016/j.chemosphere.2020.125815
[89] A N S, B M I, C M R S, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116
[90] GUO D, ALI A, REN C, et al. EDTA and organic acids assisted phytoextraction of Cd and Zn from a smelter contaminated soil by potherb mustard (Brassica juncea, Coss) and evaluation of its bioindicators[J]. Ecotoxicology and Environmental Safety, 2019, 167: 396-403. doi: 10.1016/j.ecoenv.2018.10.038
[91] HUANG G, GUO G, YAO S, et al. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (ricinus communis L. ) under Cu stress[J]. International Journal of Phytoremediation, 2016, 18(1): 33-40. doi: 10.1080/15226514.2015.1058333
[92] PARVEEN A, SALEEM M H, KAMRAN M, et al. Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (corchorus capsularis L. ) seedlings exposed to copper stress[J]. Biomolecules, 2020, 10(4): 592. doi: 10.3390/biom10040592
[93] REN C, GUO D, LIU X, et al. Performance of the emerging biochar on the stabilization of potentially toxic metals in smelter- and mining-contaminated soils[J]. Environmental Science and Pollution Research, 2020, 24(1): 1-11. doi: 10.1007/s11356-020-07805-5?utm_content=null
[94] MEI H, ZHONGWU L, NINGLIN L, et al. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of The Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282
[95] D L J A B C, A H W, A M A, et al. Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment-ScienceDirect[J]. Environmental Research, 2020, 188: 109886. doi: 10.1016/j.envres.2020.109886
[96] MAQBOOL A, ALI S, RIZWAN M, et al. N-Fertilizer (Urea) enhances the phytoextraction of cadmium through solanum nigrum L[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 3850. doi: 10.3390/ijerph17113850
[97] CHEN L, LONG C, WANG D, et al. Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by brassica juncea L. enhanced with exogenous application of plant growth regulators[J]. Chemosphere, 2020, 242: 125112. doi: 10.1016/j.chemosphere.2019.125112
[98] CAMESELLE C, CHIRAKKARA R A, REDDY K R. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities[J]. Chemosphere, 2013, 93(4): 626-636. doi: 10.1016/j.chemosphere.2013.06.029
[99] ACOSTA-SANTOYO G, CAMESELLE C, BUSTOS E. Electrokinetic-Enhanced ryegrass cultures in soils polluted with organic and inorganic compounds[J]. Environmental Research, 2017, 158: 118-125. doi: 10.1016/j.envres.2017.06.004
[100] LIM J M, SALIDO A L, BUTCHER D J. Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics[J]. Microchemical Journal, 2004, 76(1/2): 3-9. http://www.researchgate.net/profile/Arthur_Salido/publication/223591827_Phytoremediation_of_lead_using_Indian_mustard_(Brassica_juncea)_with_EDTA_and_electrodics._Microchem_J/links/552d6ae40cf29b22c9c4f481.pdf
-
计量
- 文章访问数: 4109
- PDF下载数: 237
- 施引文献: 0