中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

岩石土壤及沉积物样品中210Pb-210Bi-210Po的快速联合测定

王玉学, 郭冬发, 黄秋红, 王哲, 孙伟, 刘立坤. 岩石土壤及沉积物样品中210Pb-210Bi-210Po的快速联合测定[J]. 岩矿测试, 2013, 32(3): 462-468.
引用本文: 王玉学, 郭冬发, 黄秋红, 王哲, 孙伟, 刘立坤. 岩石土壤及沉积物样品中210Pb-210Bi-210Po的快速联合测定[J]. 岩矿测试, 2013, 32(3): 462-468.
Yu-xue WANG, Dong-fa GUO, Qiu-hong HUANG, Zhe WANG, Wei SUN, Li-kun LIU. Joint and Rapid Determination of 210Pb-210Bi-210Po in Rock, Soil and Sediment Samples by Constant Temperature Spontaneous Deposition on Cu-foil with Gross α and Gross β Counting[J]. Rock and Mineral Analysis, 2013, 32(3): 462-468.
Citation: Yu-xue WANG, Dong-fa GUO, Qiu-hong HUANG, Zhe WANG, Wei SUN, Li-kun LIU. Joint and Rapid Determination of 210Pb-210Bi-210Po in Rock, Soil and Sediment Samples by Constant Temperature Spontaneous Deposition on Cu-foil with Gross α and Gross β Counting[J]. Rock and Mineral Analysis, 2013, 32(3): 462-468.

岩石土壤及沉积物样品中210Pb-210Bi-210Po的快速联合测定

  • 基金项目:
    中国地质大调查项目(121201112027)
详细信息
    作者简介: 王玉学,博士研究生,从事核素分析技术研究与应用工作。E-mail:wangyux9@163.com
    通讯作者: 郭冬发,博士生导师,研究员级高级工程师,从事核地质分析测试技术研究工作。E-mail:guodongfa@263.net
  • 中图分类号: O614.433;O614.532;O614.63

Joint and Rapid Determination of 210Pb-210Bi-210Po in Rock, Soil and Sediment Samples by Constant Temperature Spontaneous Deposition on Cu-foil with Gross α and Gross β Counting

More Information
  • 铀系核素210Pb-210Bi-210Po目前通常采用相对独立的分析技术,三核素分别进行测定,并存在一些技术问题需要解决。文献报道的三核素联测技术需要使用多种昂贵的测试设备和示踪剂,或者制源体系抗干扰能力较弱且分析周期较长。本文研究了210Bi、210Po同时且定量恒温自沉积于铜箔的最佳制源条件,建立了双样-两次铜箔恒温自沉积制源-总α、总β同时计数法快速联合测定岩石、土壤及沉积物样品中210Pb-210Bi-210Po的分析技术。结果表明,当铜镀片面积为3.14 cm2,盐酸浓度为0.5 mol/L,氯化钠浓度为3.5 mol/L,溶液体积为20 mL,恒温90℃,振速为120 r/min,振幅20 mm,制源70 min,210Bi和210Po可同步定量自沉积且210Pb不沉积。在抗坏血酸存在下,大量共存元素不干扰自沉积。方法的精密度优于5%,全程加标放化回收率在99.5%~100.5%之间。该联测技术采用的制源体系抗稳定铋干扰能力较强,回收稳定,分析周期短,仅需一台国产测试设备并无需示踪剂即可完成三核素联合测定,同时也适合于三核素的独立测定。
  • 加载中
  • 图 1  盐酸浓度对210Po自沉积回收率的影响

    Figure 1. 

    图 2  盐酸浓度对210Bi自沉积回收率的影响

    Figure 2. 

    图 3  氯离子浓度对210Po自沉积回收率的影响

    Figure 3. 

    图 4  氯离子浓度对210Bi自沉积回收的影响

    Figure 4. 

    图 5  温度对210Po自沉积回收率的影响

    Figure 5. 

    图 6  温度对210Bi自沉积回收率的影响

    Figure 6. 

    图 7  制源溶液初始体积对210Po自沉积回收率的影响

    Figure 7. 

    图 8  制源溶液初始体积对210Bi自沉积回收率的影响

    Figure 8. 

    图 9  制源振速对210Po自沉积回收率的影响

    Figure 9. 

    图 10  制源振速对210Bi自沉积回收率的影响

    Figure 10. 

    表 1  共存元素(离子)允许量

    Table 1.  Permission amounts of coexisting elements or ions

    共存元素 允许量/μg 共存元素(离子) 允许量/μg
    Au(Ⅲ) 2 Mn(Ⅶ) 2500
    Te(Ⅳ) 5 Pb(Ⅱ) 20000
    Ag(Ⅰ) 5 Fe(Ⅲ) 20000
    Se(Ⅳ) 10 PO43- 150000
    Hg(Ⅱ) 10 ClO4- 200000
    Sb(Ⅲ) 10 F- 200000
    Ce(Ⅳ) 10 NO3- 200000
    Mo(Ⅵ) 100 SO42- 200000
    V(Ⅴ) 200 238U(Ⅵ) 500 Bq
    Bi(Ⅲ) 200 232Th(Ⅳ) 500 Bq
    Cr(Ⅵ) 400 226Ra(Ⅱ) 500 Bq
    Cu(Ⅱ) 2000 40K(Ⅰ) 10000 Bq
    下载: 导出CSV

    表 2  全程加标放化回收率

    Table 2.  Total radiochemical spiked recovery rates

    标准物质
    编号
    样品名称 取样量/g 三核素
    加标量
    /Bq
    回收率/%
    210Pb 210Bi 210Po
    GBW 07103 岩石 1.0000 0.10 99.6 100.4 100.2
    GBW 07106 岩石 1.0000 0.10 99.6 100.4 100.0
    GBW 04117 产铀岩石 1.0000 0.10 100.4 100.5 99.8
    GBW 04119 产铀岩石 1.0000 0.10 99.7 99.8 99.7
    GBW 07404 土壤 1.0000 0.10 99.8 100.4 100.3
    GBW 07405 土壤 1.0000 0.10 100.3 99.8 100.2
    GBW 07310 水系沉积物 1.0000 0.10 100.5 99.7 100.5
    GBW 07311 水系沉积物 1.0000 0.10 100.3 99.8 99.9
    GBW 04110 铀矿石 0.1000 1.00 100.4 99.6 99.7
    GBW 04111 铀矿石 0.1000 1.00 99.7 100.2 100.1
    下载: 导出CSV
  • [1]

    Kim C K, Kim C S, Sansone U, Martin P. Development and application of an on-line sequential injection system for the separation of Pu, 210Po and 210Pb from environmental samples[J].Applied Radiation and Isotopes, 2008, 66(2): 223-230. doi: 10.1016/j.apradiso.2007.08.006

    [2]

    Kim C K, Martin P, Fajgelj A. Quantification of mea-surement uncertainty in the sequential determination of 210Pb and 210Po by liquid scintillation counting and alpha-particle spectrometry[J].Accreditation and Quality Assurance, 2008, 13(2): 691-702.

    [3]

    Connan O, Boust D, Billon G, Solier L, Rozet M, Bouderbala S.Solid partitioning and solid-liquid distribution of 210Po and 210Pb in marine anoxic sediments: Roads of Cherbourg at the northwestern France [J].Journal of Environmental Radioactivity,2009, 100(10): 905-913. doi: 10.1016/j.jenvrad.2009.06.016

    [4]

    Yamamoto M, Sakaguchi A, Tomita J, Imanaka T, Shiraishi K. Measurements of 210Po and 210Pb in total diet samples: Estimate of dietary intakes of 210Po and 210Pb for Japanese [J].Journal of Radioanalytical and Nuclear Chemistry, 2009, 279(1): 93-103. doi: 10.1007/s10967-007-7198-8

    [5]

    Kawakami H, Yang Y L, Kusakabe M. Distributions of 210Po and 210Pb radioactivity in the intermediate layer of the northwestern North Pacific [J].Journal of Radioanalytical and Nuclear Chemistry,2009,279(2): 561-566. doi: 10.1007/s10967-008-7324-2

    [6]

    Martin P, Hancock G. Routine analysis of naturally occurring radionuclides in environmental samples by alpha-particle spectrometry[R]. Canberra: Supervising Scientist for the Alligator Rivers Region, 1992.

    [7]

    Desideri D, Guerra F, Meli M A, Testa C. Determin-ation of 210Pb in sediments by extraction chromatography [J].Journal of Radioanalytical and Nuclear Chemistry, 1995,200(5): 385-396. doi: 10.1007/BF02162880

    [8]

    Assunta M M, Desideri D, Roselli C, Feduzi L. Analytical methods to determine 210Po and 210Pb in marine samples [J].Microchemical Journal,2011, 99(2): 273-277. doi: 10.1016/j.microc.2011.05.013

    [9]

    Harada K, Burnett W C, Larock P A. Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria [J]. Geochimica et Cosmo-chimica Acta, 1989,53(1): 143-150. doi: 10.1016/0016-7037(89)90281-0

    [10]

    Claude W S, Conrad P W. Radiochemical determination of lead-210 in uranium ores and air dusts [J].Analytical Chemistry,1977,9(2): 302-306.

    [11]

    Cutshall N H, Larsen I L, Olsen C R. Direct analysis of 210Pb in sediment samples: Self-absorption corrections [J].Nuclear Instruments and Methods, 1983,206(1-2): 309-312. doi: 10.1016/0167-5087(83)91273-5

    [12]

    Villa M, Hurtado S, Manjon G, Garcia-Tenorio R. Calibration and measurement of 210Pb using two independent techniques [J].Radiation Measurements, 2007,42(9): 1552-1560. doi: 10.1016/j.radmeas.2007.05.053

    [13]

    Sima O, Arnold D. Transfer of the efficiency calibration of germanium gamma-ray detectors using the GESPECOR software [J].Applied Radiation and Isotopes, 2002,56(1): 71-75.

    [14]

    Kunzendorf H. A practical approach for self-absorption correction in 210Pb gamma-spectrometric dating [J]. Journal of Radioanalytical and Nuclear Chemistry, 1996,204(1): 23-31. doi: 10.1007/BF02060864

    [15]

    Biggin C D, Cook G T, MacKenzie A B, Pates J M. Time-efficient method for the determination of 210Pb, 210Bi, and 210Po activities in seawater using liquid scintillation spectrometry [J]. Analytical Chemistry, 2002, 74(3): 671-677. doi: 10.1021/ac0107599

    [16]

    王玉学,郭冬发,黄秋红.镍箔恒温自沉积总α、总β计数法同时或连续测定样品中210Pb、210Bi、210Po[J].铀矿地质,2012,28(3): 165-172.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1130
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2012-04-21
录用日期:  2012-11-27

目录