An Investigation on the Catalytic Degradation of Dyeing Wastewater with Fe-ZSM-5 Zeolite
-
摘要: 传统的Fenton均相亚铁盐催化剂处理染料废水,具有难以避免的二次污染和亚铁离子流失问题。分子筛催化剂相比传统催化剂具有高效环保的特点,在催化氧化染料废水领域有着良好的前景。本文通过液相离子交换法制备了Fe-ZSM-5非均相分子筛催化剂,替代传统的亚铁盐催化剂,应用X射线衍射对制备的Fe-ZSM-5分子筛催化剂进行表征,表明随离子交换次数的增加,Fe-ZSM-5催化剂负载的铁量上升,且较好地保持了分子筛结构,有利于提高亚铁离子的催化能力。通过实验确定了Fe-ZSM-5催化剂催化反应的最佳温度、pH值、Fe-ZSM-5的用量、反应时间等工艺参数,比较了Fe-ZSM-5催化剂和传统Fenton均相催化剂降解染料废水的脱色率和废水中铁离子的残留量,结果表明Fe-ZSM-5的脱色率达到98.5%,相比于Fenton均相催化剂的脱色率提升约3%;两种催化剂的铁离子残留量差别显著,Fe-ZSM-5催化剂处理的废水中只产生微量的Fe离子,可以认为Fe-ZSM-5非均相分子筛催化剂有效地解决了催化剂损耗和二次污染问题。
-
关键词:
- Fe-ZSM-5分子筛 /
- 液相离子交换法 /
- 均相亚铁盐催化剂 /
- 染料废水 /
- 脱色效果
Abstract: A homogeneous ferrous salt catalyst was used in the traditional Fenton oxidation technology for dyeing wastewater. However, it was difficult to avoid the secondary pollution and loss of ferrous ions. Zeolite catalysts, which are more efficient and environmentally friendly than conventional catalysts, have good prospects in the field of catalytic oxidation of dyeing wastewater. In this article, Fe-ZSM-5 zeolite catalyst was prepared by the liquid ion exchange method to replace the traditional ferrous salt catalyst and its catalytic effect was studied for wastewater treatment with the Fenton reagent. X-ray Diffraction was applied to study the characteristics of the Fe-ZSM-5 zeolite catalyst. The result indicated that the Fe-ZSM-5 well reserved the structures of a molecular sieve, which improved the catalytic effect. The effect of the number of ion exchanges and supported Fe on the structure of ZSM-5 zeolite is discussed in this paper. The treatment of dyeing wastewater by catalyzer of Fe-ZSM-5 and oxidant of H2O2 has been investigated under the optimal conditions of temperature, pH value, dosage of Fe-ZSM-5 and reaction time. Results show that Fe-ZSM-5 zeolite catalyst has excellent catalytic effect and the decolorization rate of the dye was to 98.5% under optimal conditions. The catalytic effect of the heterogeneous Fe-ZSM-5 was 3% higher than that of the traditional Fenton oxidation technology. Moreover, the residuals of Fe were significantly different between the two methods, which demonstrate that the heterogeneous Fe-ZSM-5 catalyzer efficiently overcame the problems of the catalyzer loss and secondary pollution. -
表 1 均相Fenton试剂和非均相Fe-ZSM-5催化剂的比较
Table 1. Comparison of decoloration effect with Fenton and Fe-ZSM-5 zeolite
催化剂 催化剂用量ρ/
(g·L-1)残留Fe离子浓度ρ(Fe)/
(g·L-1)脱色率/% Fenton 均相催化剂 0.79 600×10-6 95.2 Fe-ZSM-5非均相
分子筛催化剂0.79 2×10-6 98.5 -
[1] 石油化学工业部化工设计院.污染环境的工业有害物[M].北京:石油化学工业出版社, 1976: 247-253.
[2] 李金英,杨春维. 水处理中的高级氧化技术[J].科技导报, 2008,26(16):88-92. doi: 10.3321/j.issn:1000-7857.2008.16.020
[3] 黄仲涛.工业催化[M].北京:化学工业出版社, 1994: 45.
[4] Nogueira R F, Trovó A G, Mode D F.Solar photo-degradation of dichloroacetic acid and 2,4-dichloro-phenol using an enhanced photo-fenton process[J]. Chemosphere, 2002, 48: 385-391. doi: 10.1016/S0045-6535(02)00099-1
[5] Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K. Degradation of bisphenol A in water by the photo-Fenton reaction [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,162: 297-305. doi: 10.1016/S1010-6030(03)00374-5
[6] 薛勇,蒋宝军. Fenton法在污水处理中的应用和研究进展[J].中国资源综合利用, 2011, 29(8): 60-62. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS201108045.htm
[7] 王建信.超声-Fenton氧化技术降解水中苯酚和对硝基苯酚的研究[D].上海:同济大学,2004.
[8] 白蕊,李巧玲,李建强,郝晏. Fenton法及类Fenton法在污水处理方面的研究与应用[J].化工科技, 2010, 18(6): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-JKGH201006017.htm
[9] Esther F, Tibor C, Gyula O. Removal of synthetic dyes from wastewater: A review [J]. Environment Inter-national, 2004, 30(7): 953-971. doi: 10.1016/j.envint.2004.02.001
[10] Kasiri M B, Aleboyeh H, Aleboyeh A. Degradation of acid blue 74 using Fe-ZSM-5 zeolite as a heterogeneous photo-fenton catalyst [J]. Applied Catalysis B: Environ-mental, 2008, 84(1-2): 9-15. doi: 10.1016/j.apcatb.2008.02.024
[11] 李赫咺,项寿鹤,吴德明,刘月亭,张晓森,刘述铨.ZSM-5沸石分子筛合成的研究[J].高等学校化学学报, 1981, 2(4): 517-519. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013303272.htm
[12] 杨少华,崔英德,陈循军,涂星.ZSM-5沸石分子筛的合成和表面改性研究进展[J].精细石油化工进展, 2003, 4(4): 47-50. http://www.cnki.com.cn/Article/CJFDTOTAL-JXSI200304017.htm
[13] 张玉荣,杨鸿鹰.分子筛ZSM-5的改性研究进展[J].化学工程与装备, 2011(9): 185-187. http://www.cnki.com.cn/Article/CJFDTOTAL-FJHG201109058.htm
[14] 任瑞霞,刘姝,宋雯雯,刘海莲. ZSM-5分子筛的合成与应用[J].化工科技, 2011, 19(1): 55-60. http://cdmd.cnki.com.cn/Article/CDMD-10749-1016269961.htm
[15] 薛宁,刘晴居,沈贵.负载金属离子ZSM-5分子筛膜脱除苯并噻吩-二苯并噻吩的性能[J].南京工业大学学报:自然科学版,2011, 33(4): 63-67. http://www.cnki.com.cn/Article/CJFDTOTAL-NHXB201104015.htm
[16] 范闽光,李斌,张飞跃,张少龙,李景林.Cu/HZSM-5分子筛上乙醇芳构化的在线分析及其催化活性的评价[J].分析化学, 2010, 38(4): 517-521. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201004017.htm
[17] 常立亚,何凯,王婧,黄伟,李哲.Fe-Mo/ZSM-5蜂窝催化剂上NOx的催化还原性能[J].煤炭转化,2011,34(1): 62-64, 77.
[18] 佟惠娟,李工.含铁和钒的ZSM-5型分子筛的合成、表征及催化性能[J].石油化工高等学校学报,2002,15(2): 33-36. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHX200202007.htm
[19] 张春雷,郭兴巴图,李爽,袁艺.HZSM-5结晶度和晶粒度对甲烷无氧芳结构化催化剂性能的影响[J].催化学报,1998, 19(6): 549-582. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA806.026.htm
[20] 王锋,贾鑫龙,胡津仙,任杰,李永旺,孙予罕.形貌、晶粒大小不同的ZSM-5分子筛的表征及催化性能的研究[J].分子催化, 2003, 17(2): 140-145. http://www.cnki.com.cn/Article/CJFDTOTAL-FZCH200302012.htm
[21] 陈忠林,朱洪平,邹洪波,王海鸥,韩帮军.Fenton试剂处理水中有机物的特性及其应用[J].黑龙江大学自然科学学报, 2005, 22(2): 204-207. http://www.cnki.com.cn/Article/CJFDTOTAL-HLDZ200502011.htm
[22] 武汉大学.分析化学实验[M].北京:高等教育出版社, 1985: 354-358.