Discovery and Geological Significance of Late Triassic A–Type Granite in Jalaid Banner, Middle of Great Xing’an Range
-
摘要:
大兴安岭中部在三叠纪叠加了古亚洲洋和蒙古−鄂霍茨克洋的影响,其构造背景存较大争议。笔者对大兴安岭中部扎赉特旗中粗粒正长花岗岩进行岩石学、岩石地球化学、锆石LA−ICP−MS U−Pb测年和Lu−Hf同位素分析。结果显示:锆石U−Pb年龄加权平均值为(228.5±2.0)Ma(MSWD=2.8);岩石高Si、富Fe、高K、低Sr和Eu,相对富Nb和富Zr,高10000×Ga/Al(3.0~3.1);全岩锆饱和温度平均值为805 ℃;综合判定该套花岗岩为铝质A型花岗岩。该岩体的εHf(t)值为+5.28~+8.00,二阶段Hf模式年龄(TDM2)为683~832 Ma,指示花岗岩可能形成于新增生地壳物质的部分熔融。综合区域已有研究成果,表明扎赉特旗地区的古亚洲洋残余洋盆在二叠纪闭合并进入碰撞造山阶段,晚三叠世A型花岗岩的出现,标志着本区进入造山后伸展阶段。
Abstract:The middle of Great Xing’an Range superimposed the influence of the Paleo–Asian ocean and the Mongol–Okhotsk ocean in the Triassic, and its tectonic setting remains controversial. Taking the medium-coarse grained texture syenogranite in Jalaid Banner, middle of Great Xing’an Range as research object, the study on petrology, geochemistry, zircon LA–ICP–MS U–Pb age and Lu–Hf isotope compositions have been carried out. The results show that the weighted average zircon U–Pb age of the granite is (228.5±2.0) Ma (MSWD=2.8); The rocks are high in Si, Fe and K, depleted in Sr and EU, relatively rich in Nb and Zr, and high in 10000×Ga/Al (3.0~3.1); The average of zircon saturation temperature is 805 ℃; It is comprehensively determined that the granite is considered to be the aluminous A–type granite. The granite εHf(t) values range from + 5.28 to + 8.00, and the TDM2 range from 683 Ma to 832 Ma, indicating that the granite may have been formed by partial melting of neoaccretionary crustal materials. Based on the regional research results, this paper holds that the residual ocean basin of the Paleo–Asian ocean in the Jalaid Banner closed and entered the collision orogeny stage in the Permian, and the appearance of A–type granite in the Late Triassic indicates that the area entered the post-orogenic extension stage.
-
Key words:
- geochemistry /
- Late Triassic /
- A–type granite /
- Paleo–Asian ocean /
- Jalaid Banner /
- middle of Great Xing’an Range
-
图 1 大兴安岭中部晚二叠世—早三叠世沉积地层分布图(据李世超等,2017修改)
Figure 1.
图 8 球粒陨石标准化的REE图(标准化数值据Taylor et al.,1985)
Figure 8.
图 9 原始地幔标准化的微量元素蛛网图(标准化数值据Sun et al.,1989)
Figure 9.
图 11 簸箕山中粗粒正长花岗岩A型花岗岩判别图(据Whalen al.,1987;Eby,1992)
Figure 11.
表 1 簸箕山中粗粒正长花岗岩主量元素(%)和微量元素(10−6)分析结果
Table 1. Major (%) and trace (10−6) elements compositions of Bojishan medium-coarse grained texture syenogranite
样品号 5458TWYQ1 5458TWYQ2 5458TWYQ3 5458TWYQ4 样品号 5458TWYQ1 5458TWYQ2 5458TWYQ3 5458TWYQ4 SiO2 74.78 73.65 74.94 74.92 Tm 0.56 0.61 0.58 0.47 TiO2 0.15 0.22 0.14 0.13 Yb 3.63 4.06 3.65 3.04 Al2O3 12.51 13.50 12.85 12.67 Lu 0.52 0.59 0.52 0.42 Fe2O3 1.26 1.79 1.31 1.14 Y 32.86 37.17 34.98 27.27 FeO 0.54 0.36 0.54 0.49 ∑REE 319.72 288.57 345.22 297.26 MnO 0.02 0.03 0.02 0.02 LREE 293.76 260.84 318.04 275.82 MgO 0.10 0.06 0.04 0.06 HREE 25.96 27.73 27.18 21.44 CaO 0.58 0.69 0.57 0.57 (La/Yb)N 11.97 10.08 13.16 13.04 Na2O 3.86 3.79 3.79 3.64 Eu* 0.07 0.17 0.08 0.06 K2O 5.60 5.49 5.52 5.36 Rb 179.94 175.58 182.96 178.48 P2O5 0.02 0.06 0.02 0.02 Ba 153.07 397.10 158.09 131.50 LOI 0.44 0.28 0.36 0.71 Th 15.92 23.35 20.13 13.44 Total 99.85 99.91 100.10 99.73 U 2.11 2.91 1.97 1.97 TFeO 1.67 1.97 1.72 1.52 Nb 16.16 18.82 15.47 14.29 TFeO/MgO 17.22 32.87 40.87 26.62 Ta 1.11 1.49 1.00 0.96 K2O/Na2O 1.45 1.45 1.46 1.47 Sr 51.36 110.92 51.64 51.63 A/NK 1.01 1.11 1.05 1.07 Zr 216.01 253.37 194.14 178.82 A/CNK 0.93 1.01 0.97 0.99 Hf 7.18 8.31 7.59 6.64 La 64.33 60.65 71.11 58.60 Cr 20.42 23.03 16.70 22.82 Ce 150.29 120.81 157.44 146.66 Ga 20.09 21.19 20.83 20.44 Pr 15.22 15.03 17.16 13.66 Co 3.64 3.61 4.06 3.91 Nd 54.47 54.35 61.88 48.93 Ni 2.59 2.97 1.70 1.84 Sm 9.25 9.50 10.19 7.83 Li 2.80 4.41 2.50 2.35 Eu 0.20 0.49 0.26 0.15 Be 3.55 4.16 3.89 3.47 Gd 8.04 8.05 8.71 6.78 Sc 2.99 2.07 3.26 3.38 Tb 1.25 1.37 1.34 1.06 Zr-Nb-Ce-Y 415.32 430.17 402.03 367.04 Dy 7.09 7.58 7.34 5.66 10000Ga/Al 3.03 2.97 3.06 3.05 Ho 1.18 1.34 1.24 0.98 锆石饱和温度 803 825 798 794 Er 3.69 4.11 3.80 3.04 表 2 簸箕山中粗粒正长花岗岩(样品5458TW)锆石LA–ICP–MS定年分析结果
Table 2. Results of zircon LA–ICP–MS dating analysis of Bojishan medium–coarse grained texture syenogranite (Sample 5458TW)
测点号 Th U Th/U 同位素比值 年龄(Ma) (10–6) 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 207Pb/206Pb ±1δ 207Pb/235U ±1δ 206Pb/238U ±1δ 01 378 959 0.39 0.05364 0.00136 0.27628 0.00778 0.03719 0.00057 367 57 248 6 235 4 02 330 686 0.48 0.05180 0.00136 0.26206 0.00714 0.03654 0.00040 276 64 236 6 231 2 03 404 1010 0.40 0.05197 0.00120 0.26117 0.00640 0.03620 0.00031 283 56 236 5 229 2 04 165 388 0.43 0.07682 0.00519 0.39250 0.02941 0.03636 0.00064 1117 140 336 21 230 4 05 490 620 0.79 0.05121 0.00138 0.25733 0.00699 0.03634 0.00038 250 61 233 6 230 2 06 112 187 0.60 0.05453 0.00235 0.27077 0.01111 0.03629 0.00046 394 94 243 9 230 3 07 41 69 0.60 0.05505 0.00507 0.26506 0.02421 0.03507 0.00080 413 207 239 19 222 5 08 339 702 0.48 0.05154 0.00144 0.25807 0.00756 0.03611 0.00039 265 65 233 6 229 2 09 147 407 0.36 0.05097 0.00181 0.25619 0.00963 0.03632 0.00060 239 83 232 8 230 4 10 31 118 0.26 0.05274 0.00249 0.25670 0.01198 0.03512 0.00053 317 107 232 10 223 3 11 123 313 0.39 0.05371 0.00207 0.26161 0.01062 0.03476 0.00051 367 55 236 9 220 3 12 412 1042 0.40 0.05233 0.00160 0.27109 0.00819 0.03753 0.00058 298 70 244 7 238 4 13 221 497 0.45 0.05438 0.00159 0.27852 0.00854 0.03695 0.00043 387 65 249 7 234 3 14 237 471 0.50 0.05051 0.00157 0.24961 0.00781 0.03570 0.00038 217 70 226 6 226 2 15 125 324 0.39 0.05021 0.00170 0.24519 0.00826 0.03537 0.00047 211 78 223 7 224 3 16 273 771 0.35 0.05189 0.00143 0.25854 0.00687 0.03579 0.00052 280 63 233 6 227 3 17 180 424 0.42 0.04842 0.00149 0.24527 0.00827 0.03648 0.00049 120 68 223 7 231 3 18 127 328 0.39 0.05202 0.00175 0.25291 0.00847 0.03523 0.00041 287 76 229 7 223 3 19 1142 1118 1.02 0.05018 0.00119 0.25017 0.00608 0.03603 0.00036 211 56 227 5 228 2 20 146 364 0.40 0.04879 0.00156 0.23619 0.00735 0.03516 0.00034 200 74 215 6 223 2 21 225 482 0.47 0.05290 0.00201 0.25998 0.01034 0.03547 0.00051 324 87 235 8 225 3 22 199 523 0.38 0.05183 0.00137 0.27336 0.00813 0.03810 0.00055 280 64 245 6 241 3 23 406 841 0.48 0.05220 0.00126 0.26285 0.00667 0.03660 0.00050 295 56 237 5 232 3 24 89 193 0.46 0.05123 0.00215 0.25701 0.01083 0.03658 0.00055 250 98 232 9 232 3 表 3 簸箕山中粗粒正长花岗岩(样品5458TW)锆石Hf同位素数据分析结果
Table 3. Results of Lu–Hf isotopic compositions of Bojishan medium–coarse grained texture syenogranite (Sample 5458TW)
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(t) TDM1(Ma) TDM2(Ma) ƒLu/Hf 03 229 0.051222 0.001517 0.282831 0.000014 7.01 599 739 −0.95 06 230 0.034238 0.001078 0.282791 0.000016 5.69 649 814 −0.97 07 222 0.066185 0.002142 0.282803 0.000025 5.78 651 802 −0.94 08 229 0.054429 0.001638 0.282860 0.000019 8.00 560 683 −0.95 10 223 0.038090 0.001269 0.282834 0.000021 7.04 591 733 −0.96 12 238 0.036658 0.001139 0.282815 0.000014 6.69 617 764 −0.97 13 234 0.067704 0.002131 0.282807 0.000017 6.17 645 790 −0.94 15 224 0.047940 0.001589 0.282785 0.000017 5.28 667 832 −0.95 16 227 0.047422 0.001421 0.282807 0.000014 6.12 633 787 −0.96 17 231 0.040945 0.001259 0.282813 0.000016 6.47 621 771 −0.96 18 223 0.016970 0.000520 0.282824 0.000015 6.80 593 746 −0.98 19 228 0.076378 0.002346 0.282837 0.000020 7.07 605 735 −0.93 20 223 0.022040 0.000683 0.282807 0.000015 6.16 620 782 −0.98 24 232 0.046200 0.001469 0.282831 0.000016 7.10 598 737 −0.96 -
卜建军, 何卫红, 张克信, 等. 古亚洲洋的演化: 来自古生物地层学方面的证据[J]. 地球科学, 2020, 45(3): 711-727
BU Jianjun, HE Weihong, ZHANG Kexin, et al. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy[J]. Earth Science, 2020, 45(3): 711-727.
葛文春, 吴福元, 周长勇, 等. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 2005, 21(3): 749-762 doi: 10.3969/j.issn.1000-0569.2005.03.015
GE Wenchun, WU Fuyuan, ZHOU Changyong, et al. Zircon U-Pb Ages and its Significance of the Mesozoic Granites in the Wulanhaote Region, Central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2005, 21(3): 749-762. doi: 10.3969/j.issn.1000-0569.2005.03.015
贺锋, 徐立权, 苏宏伟, 等. 内蒙古西部甜水井地区中二叠世A型花岗岩[J]. 西北地质, 2004, 37(3): 7-14 doi: 10.3969/j.issn.1009-6248.2004.03.002
HE Feng, XU Liquan, SU Hongwei, et al. Characteristics and tectonic setting of Middle-Permian A-type granites in Tianshuijing area, west of Inner Mongolia[J]. Northwestern Geology, 2004, 37(3): 7-14. doi: 10.3969/j.issn.1009-6248.2004.03.002
贺宏云, 李英雷, 刘汇川, 等. 大兴安岭东南段中三叠世岩浆岩年代学、地球化学特征及其对古亚洲洋构造演化时限的制约[J]. 地质通报, 2020, 39(7): 1046-1061
HE Hongyun, LI Yinglei, LIU Huichuan, et al. Geochronology and Geochemistry of the Middle Triassic Magmatic Rocks in the Southeastern Part of the Da Hinggan Mountains and their Constraints on the Tectonic Evolution of Paleo- Asian Ocean[J]. Geological Bulletin of China, 2020, 39(7): 1046-1061.
纪政, 葛文春, 杨浩, 等. 大兴安岭中段晚三叠世安第斯型安山岩: 蒙古-鄂霍茨克大洋板片南向俯冲作用的产物[J]. 岩石学报, 2018, 34(10): 2917-2930
JI Zhen, GE Wenchun, YANG Hao, et al. The Late Triassic Andean-type Andesite from the Central Great Xing'an Range: Products of the Southward Subduction of the Mongol-Okhotsk Oceanic Plate[J]. Acta Petrologica Sinica, 2018, 34(10): 2917-2930.
焦光磊, 李永军, 易善鑫, 等. 西准噶尔由后碰撞向板内体制转变的地质记录--来自克西克A型花岗岩的证据[J]. 西北地质, 2013, 46(3): 39-49 doi: 10.3969/j.issn.1009-6248.2013.03.002
JIAO Guanglei, LI Yongjun, YI Shanxin, et al. The Geological Record of the Post-collision Shift to Intraplate System in West Junggar: Evidence from Kexike A-type Granite[J]. Northwestern Geology, 2013, 46(3): 39-49. doi: 10.3969/j.issn.1009-6248.2013.03.002
李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3): 565-582
LI Jinyi, GAO Liming, SUN Guihua, et al. Shuangjingzi Middle Triassic Syn- collisional Crust- derived Granite in the East Inner Mongolia and its Constraint on the Timing of Collision Between Siberian and Sino-Korean Paleo-plates[J]. Acta Petrologica Sinica, 2017, 23(3): 565-582.
李锦轶, 刘建峰, 曲军峰, 等. 中国东北地区古生代构造单元: 地块还是造山带?[J]地球科学, 2019, 44(10): 3157-3177 doi: 10.3799/dqkx.2019.980
LI Jinyi, LIU Jianfeng, QU Junfeng, et al. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J] Earth Science, 2019, 44(10): 3157-3177.https://doi.org/10.3799/dqkx.2019.980. doi: 10.3799/dqkx.2019.980
李小伟, 莫宣学, 赵志丹, 等. 关于A型花岗岩判别过程中若干问题的讨论[J]. 地质通报, 2010, 29(2/3): 278-285
LI Xiaowei, MO Xuanxue, ZHAO Zhidan, et al. A Discussion on How to Discriminate A-type Granite[J]. Geological Bulletin of China, 2010, 29(2/3): 278-285.
李世超, 张凌宇, 李鹏川, 等. 大兴安岭中段早三叠世O型埃达克岩的发现及其大地构造意义[J]. 地球科学, 2017, 42(12): 2117-2128 doi: 10.3799/dqkx.2017.136
LI Shichao, ZHANG Lingyu, LI Pengchuan, et al. Discovery and Tectonic Implications of Early Triassic O-Type Adakite in Middle of Great Xing’an Range[J]. Earth Science, 2017, 42(12): 2117-2128. doi:10.3799/dqkx.2017.136.
李斌, 陈井胜, 刘淼, 等. 内蒙古敖汉旗斜长角闪岩锆石U-Pb年龄及地球化学特征[J]. 西北地质, 2017, 50(1): 227-238 doi: 10.3969/j.issn.1009-6248.2017.01.019
LI Bin, CHEN Jingsheng, LIU Miao, et al. Zircon U-Pb Ages and Geochemical Characteristics of the Plagioclase Amphibolite in the Aohan Banner, Inner Mongolia[J]. Northwestern Geology, 2017, 50(1): 227-238. doi: 10.3969/j.issn.1009-6248.2017.01.019
梁天意, 刘敬党, 李猛猛, 等. 大兴安岭中段上二叠统林西组核形石的发现及其地质意义[J]. 地质论评, 2021, 67(3): 1-19
LIANG Tianyi, LIU Jingdang, LI Mengmeng, et al. Discovery of Oncolitic in the Upper Permian Linxi Formation in Central Great Xing’ an Mountains and its Geological Significances[J]. Geological Review, 2021, 67(3): 1-19.
马永非, 刘永江, 温泉波, 等. 大兴安岭中段晚三叠世哈达陶勒盖组火山岩成因及构造背景[J]. 地球科学, 2017, 42(12): 2146-2173
MA Yongfei, LIU Yongjiang, WEN Quanbo, et al. Petrogenesis and Tectonic Settings of Volcanic Rocks from Late Triassic Hadataolegai Fm. at Central Part of Great Xing’an Range[J]. Earth Science, 2017, 42(12): 2146-2173.
孙德有, 吴福元, 李惠民, 等. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J]. 科学通报, 2000, 45(20): 2217-2222.
SUN Deyou, WU Fuyuan, LI Huimin, et al. Emplacement Age of the Post- Ogenic A- type Granites in Northwestern Lesser Xing’an Ranges, and its Relationship to the Eastward Extension of Suolunshan- Hegenshan- Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2000, 45(20): 2217–2222.
孙德有, 吴福元, 高山. 小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J]. 地球学报, 2004, 25(02): 213-218 doi: 10.3321/j.issn:1006-3021.2004.02.023
SUN Deyou, WU Fuyuan, GAO Shan. LA-ICP-MS Zircon U-Pb Age of the Qingshui Pluton in the East Xiao Hinggan Mountains[J]. Acta Geoscientica Sinica, 2004, 25(02): 213-218. doi: 10.3321/j.issn:1006-3021.2004.02.023
孙德有, 吴福元, 高山, 等. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘, 2005, 12(2): 263-275 doi: 10.3321/j.issn:1005-2321.2005.02.028
SUN Deyou, WU Fuyuan, GAO Shan, et al. Confirmation of Two Episodes of A-type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province, and their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China[J]. Earth Science Frontiers, 2005, 12(2): 263-275. doi: 10.3321/j.issn:1005-2321.2005.02.028
田树刚, 张永生, 王俊涛, 等. 兴安-内蒙古地区晚古生代生物礁及其构造和油气意义[J]. 中国科学(地球科学), 2011, 41(4): 493–503.
TIAN Shugang, ZHANG Yongsheng, WANG Juntao, et al. Late Paleozoic Reefs and their Significance for Tectonics and Oil-gas Exploration in the Hinggan-Inner Mongolia area[J]. Science China Earth Sciences, 2011, 41(4): 493–503..
汪岩, 付俊彧, 那福超, 等. 内蒙古扎赉特旗辉长岩-闪长岩地球化学特征和LA-ICP-MS锆石U-Pb年龄[J]. 地质通报, 2013, 32(10): 1525-1535 doi: 10.3969/j.issn.1671-2552.2013.10.004
WANG Yan, FU Junyu, NA Fuchao, et al. Geochemical Characteristics and Zircon U-Pb Age of the Gabbro-Dioritein Jalaid Banner of Inner Mongolia and their Geological Significance[J]. Geological Bulletin of China, 2013, 32(10): 1525-1535. doi: 10.3969/j.issn.1671-2552.2013.10.004
汪洋, 焦永玲, 仝立华, 等. 再论A型花岗岩的实质---与张旗先生等商榷[J]. 岩石矿物学杂志, 2013, 32(2): 260-266 doi: 10.3969/j.issn.1000-6524.2013.02.013
WANG Yang, JIAO Yongling, TONG Lihua, et al. The Essence of A-type Granitoids: A Discussion on the Opinions Held by Prof. Zhang Qi and Some other Researchers[J]. Acta Petrologica et Mineralogica, 2013, 32(2): 260-266. doi: 10.3969/j.issn.1000-6524.2013.02.013
王俊涛, 张永生, 宋天锐, 等. 内蒙古扎赉特旗中二叠统岩石地层、生物地层特征及沉积环境分析[J]. 地层学杂志, 2011, 35(4): 375-375
WANG Juntao, ZHANG Yongsheng, SONG Tianyue, et al. The Middle Permian Lithostratigraphy, Biostratigraphy and Sedimentary Environments of the Jlaid Qi, Inner Mongolia[J]. Journal of Stratigraphy, 2011, 35(4): 375-375.
吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238 doi: 10.3969/j.issn.1000-0569.2007.06.001
WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646
XU Wenliang, SUN Chenyang, TANG Jie, et al. Basement Nature and Tectonic Evolution of the Xing’ an-Mongolian Orogenic Belt[J]. Earth Science, 2019, 44(5): 1620-1646.
张旗, 冉皞, 李承东. A型花岗岩的实质是什么?[J]岩石矿物学杂志, 2012, 31(4): 621-626 doi: 10.3969/j.issn.1000-6524.2012.04.014
ZHANG Qi, RAN Hao, LI Chengdong. D. A-type Granite: What is the Essence?[J] Acta Petrologica et Mineralogica, 2012, 31(4): 621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
张薇洁. A型花岗岩成因的热力学模拟[D]. 北京: 中国地质大学(北京), 2020
ZHANG Weijie. Thermodynamic Modeling of the Origin of A-type Granites [D]. Beijing: China University of Geosciences (Beijing), 2020.
张武, 傅晓平, 丁秋红, 等. 内蒙古扎赉特旗德发屯地区下三叠统老龙头组的新发现[J]. 地层学杂志, 2006, 30(1): 26-33 doi: 10.3969/j.issn.0253-4959.2006.01.004
ZHANG Wu, FU Xiaoping, DING Qiuhong, et al. A New Knowledge of the Lower Triassic Laolongtou Formation in the Defatun Area, Jalaid Qi, Inner Mongolia[J]. Journal of Stratigraphy, 2006, 30(1): 26-33. doi: 10.3969/j.issn.0253-4959.2006.01.004
赵芝. 大兴安岭北部晚古生代岩浆作用及其构造意义[D]. 长春: 吉林大学, 2011
ZHAO Zhi. Late Paleozoic Magmatism and Its Tectonic Significance in the Northern Great Xing’an Range, Northeastern China [D]. Changchun: Jilin University, 2011.
Eby G. Nelson. Chemical Subdivision of the A-type Granitoids: Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Hu Zhaochu, Gao Shan. , Liu Yongsheng, et al. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23: 1093-1101. doi: 10.1039/b804760j
Li, Xianhua, Li Zhengxiang, Li Wuxian, et al. U-Pb Zircon, Geochemical and Sr Nd Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-slab?[J] Lithos, 2007, 96: 186-204. doi: 10.1016/j.lithos.2006.09.018
Liu Huichuan, Li Yinglei, He Hongyun, et al. Two-phase Southward Subduction of the Mongol-Okhotsk Oceanic Plate Constrained by Permian-Jurassic Granitoids in the Erguna and Xing'an Massifs (NE China) [J]. Lithos, 2018, 304-307: 347-361. doi: 10.1016/j.lithos.2018.01.016
Liu Yongsheng, Hu Zhaochu, Gao Shan, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals By LA- ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[A]. In: Saunders A D, Norry M J. Magmatism in the Ocean Basins[M]. Geological Society Special Publications, 1989, 42: 313–345.
Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985.
Wang Limin, Chi Xiaoguo, Zhao Zhi, et al. Zircon U–Pb Geochronology and Geochemistry of the Maoliger Quartz Monzodiorites, Inner Mongolia, China: Implications for Carboniferous Arc Magmatism and Closure of the Palaeo-Asian Ocean[J]. International Geology Review, 2014, 56(12): 1435-1449. doi: 10.1080/00206814.2014.940611
Whalen J B, Currie K L, Chappell B W. A-type Granites: Geochemical Characteristics, Discriminations and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202
Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-type Granites in Northeastern China: Age and Geochemical Constraints on their Petrogenesis[J]. Chemical Geology, 2002, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9
Yang Hao, Ge Wenchun, Yu Qian, et al. Zircon U–Pb–Hf isotopes, Bulk-rock Geochemistry and Petrogenesis of Middle to Late Triassic I-type Granitoids in the Xing’an Block, Northeast China: Implications for Early Mesozoic Tectonic Evolution of the Central Great Xing’an Range[J]. Journal of Asian Earth Sciences, 2016, 119: 30-48. doi: 10.1016/j.jseaes.2016.01.012
Zhong Hong, Zhu Weiguang, Chu Zhuyin, et al. Shrimp U Pb Zircon Geochronology, Geochemistry, and Nd Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China[J]. Chemical Geology, 2006, 236: 112-133.