-
摘要:
以贵州某高硫铝土矿为研究对象, 采用元素分析、矿物自动分析仪(MLA)和扫描电镜(SEM)等方法, 研究了高硫铝土矿的化学组成、主要矿物的解离度及连生关系、矿物表面形貌等, 结果表明: 矿石中Al2O3含量为62.71%, S含量为3.37%, SiO2含量为9.94%;矿石中元素Ce和Ga含量分别达到121.0 g/t和40.3 g/t; 黄铁矿在矿石中分布广泛, 与一水硬铝石连生紧密, 嵌布粒度较细; 在磨矿细度为-0.075 mm占77%的条件下, 一水硬铝石和黄铁矿的解离度分别为14.10%和71.20%, 黄铁矿解离度较高, 一水硬铝石解离度较低, 可采用"阶段磨矿—阶段选别"的浮选工艺脱硫。
Abstract:This paper aims to study the chemical composition, liberation degree, interlocking relationship and surface morphology of the main minerals in high-sulfur bauxite. The high-sulfur bauxite ore in Guizhou, China was taken as the study object. By adopting the means of elemental analysis, mineral liberation analyzer (MLA) and scanning electron microscope (SEM), the research came to the following findings. The contents of Al2O3, S and SiO2 in ore were 62.71%, 3.37% and 9.94%, respectively. The contents of Ce and Ga in ores were 121.0 g/t and 40.3 g/t, respectively. Pyrite was widely distributed in the ore, closely associated with diaspore, with fine embedded particle size. When the grinding fineness was -0.075 mm accounting for 77%, the liberation degrees of diaspore and pyrite were 14.10% and 71.20%, respectively. Because the liberation degree of pyrite was high, and the liberation degree of diaspore was low, the flotation process of 'stage grinding-stage separation' could be used for desulfurization.
-
Key words:
- high-sulfur bauxite ore /
- process mineralogy /
- liberation degree /
- flotation /
- desulfurization
-
表 1 高硫铝土矿常量元素分析结果
Table 1. Analysis results of constant elements of high-sulfur bauxite ore
/% 成分 Al2O3 BaO CaO Cr2O3 TFe2O3 K2O MgO MnO Na2O 含量 62.71 0.02 0.18 0.05 7.55 1.78 0.24 0.01 0.01 成分 P2O5 SiO2 SrO TiO2 S ZnO ZrO2 LOI(含SO3) 含量 0.06 9.94 0.02 2.64 3.37 0.01 0.08 14.88 表 2 高硫铝土矿微量元素分析结果
Table 2. Analysis results of trace elements in high-sulfur bauxite ore
/(g·t-1) 元素 Bi Cd Ce Co Cr Cs Cu Ga Ge Hf 含量 1.16 0.09 121.0 26.7 179 1.33 19.0 40.3 0.13 9.8 元素 In La Li Mo Nb Ni Pb Rb Re Sb 含量 0.225 43.3 53.2 4.91 51.1 25.1 27.7 16.2 0.004 0.86 元素 Sc Se Sn Sr Ta Te Th Tl U V 含量 43.8 2 9.9 93.0 3.76 0.11 47.1 0.37 11.7 205 元素 W Y Zn Zr As Ba Be Ag - - 含量 164.5 24.8 14 332 23.6 90 1.74 0.06 - - 表 3 高硫铝土矿主要矿物组成
Table 3. Main mineral composition of high-sulfur bauxite ore
/% 矿物 一水硬铝石 黄铁矿 赤/褐铁矿 石英 金红石/锐钛矿 含量 66.94 6.03 2.26 0.66 1.76 矿物 伊利石/绢云母 绿泥石 高岭石 其他 - 含量 16.84 4.50 0.46 0.55 - 表 4 主要矿物的解离度分析结果
Table 4. Liberating analysis results of major minerals ore
/% 矿物 单体 连生体 > 3/4 3/4~1/2 1/2~1/4 < 1/4 一水硬铝石 14.10 71.59 9.38 3.40 1.53 黄铁矿 71.20 16.01 7.66 3.19 1.94 表 5 主要矿物的连生关系
Table 5. Interlocking relation of major minerals
/% 嵌连矿物/目的矿物 一水硬铝石 黄铁矿 一水硬铝石 - 14.40 黄铁矿 0.96 - 赤铁矿/褐铁矿 1.23 0.41 菱铁矿 0.00 0.00 石英 0.01 0.02 金红石/锐钛矿 1.53 0.26 伊利石/绢云母 30.27 2.62 绿泥石 3.74 1.61 高岭石 0.33 0.14 其他 0.61 0.35 自由表面积 61.32 80.19 合计 100.00 100.00 -
[1] 杨卉芃, 张亮, 冯安生, 等. 全球铝土矿资源概况及供需分析[J]. 矿产保护与利用, 2016(6): 64-70. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=96c5b0bc-62ba-4202-8c89-e79bd77f7483
YANG H P, ZHANG L, FENG A S, et al. Study on general situation and analysis of supply and demand of global bauxite resources[J]. Conservation and Utilization of Mineral Resources, 2016(6): 64-70. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=96c5b0bc-62ba-4202-8c89-e79bd77f7483
[2] 陈喜峰. 中国铝土矿资源勘查开发现状及可持续发展建议[J]. 资源与产业, 2016, 18(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201603004.htm
CHEN X F. Eexploration and sustainable development suggestions for China's bauxite resource[J]. Resources & Industries, 2016, 18(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIYU201603004.htm
[3] CHEN X H, HU Y H, LI W X, et al. pH variation mechanism of high sulfur-containing bauxite[J]. Journal od Central South University, 2015, 22(8): 2909-2913. doi: 10.1007/s11771-015-2825-y
[4] ZHAO Q, MILLER J D, WANG X M. Recent developments in the beneficiation of Chinese bauxite[J]. Mineral Processing and Extractive Mettallurgy Review, 2010, 31(2): 111-119. doi: 10.1080/08827500903404997
[5] 杨黔. 高硫铝土矿微焙烧脱硫及碱溶试验研究[D]. 贵阳: 贵州大学, 2021.
YANG Q. Experimental study on micro roasting desulfurization and akali solution of high sulfur bauxite[D]. Guiyang: Guizhou University, 2021.
[6] 李寿朋, 王瑞, 郭玉婷, 等. 中等嗜热菌群协同脱除高硫铝土矿中的硫[J]. 中国有色金属学报, 2016, 26(11): 2393-2402. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201611016.htm
LI S P, WANG R, GUO Y T, et al. Bio-desulfurization of high-sulfur bauxite by designed moderately thermophilic consortia[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(11): 2393-2402. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201611016.htm
[7] Liu Zhanwei, Li Dunyong, Ma Wenhui, et al. Sulfur removal by adding aluminum in the bayer process of high-sulfur bauxite[J]. Minerals Engineering, 2018, 11976-11981.
[8] 刘喜军, 陈延信, 赵博, 等. 高硫铝土矿焙烧脱硫试验研究[J]. 矿冶工程, 2017, 37(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201702028.htm
LIU X J, CHEN Y X, ZHAO B, et al. Experimental Investigation on roasting desulfurization of high-sulfur bauxite[J]. Mining and Metallurgical Engineering, 2017, 37(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201702028.htm
[9] 解文康, 周杰强, 陈兴华, 等. 河南某高硫铝土矿浮选脱硫试验研究[J]. 有色金属(选矿部分), 2017(1): 43-45+73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201701010.htm
XIE W K, ZHOU J Q, CHEN X H, et al. Study on the flotation desulfurization of high-sulfur bauxite in Henan[J]. Nonferrous Metals (Mieral Processing Section), 2017(1): 43-45+73. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201701010.htm
[10] 蒋兴明. 稀贵金属产业发展[M]. 北京: 冶金工业出版社, 2014: 3-4.
JIANG X M. Development of rare metal industry[M]. Beijing: Metallurgical Industry Press, 2014: 3-4.
[11] 矿产资源综合利用手册编辑委员会. 矿产资源综合利用手册[M]. 北京: 科学出版社, 2000: 825.
Resources editorial-committee-of-handbook. Handbook of comprehensive utilization of mineral resources[M]. Beijing: Science Press, 2000: 825.
[12] VIND JOHANNES, MALFLIET ANNELIES, BLANPAINl BART, et al. Rare earth element phases in bauxite residue[J]. Minerals, 2018, 8(2).
[13] CHAIKIN LEONID, SHOPPERT ANDREI, VALEEV DMITRY, et al. Concentration of rare earth elements (Sc, Y, La, Ce, Nd, Sm) in bauxite residue (red mud) obtained by water and alkali leaching of bauxite sintering dust[J]. Minerals, 2020, 10(6): 500. doi: 10.3390/min10060500
[14] 杨军臣, 王凤玲, 李德胜, 等. 铝土矿中伴生稀有稀土元素赋存状态及走向查定[J]. 矿冶, 2004, 13(2): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200402024.htm
YANG J C, WANG F L, LI D S, et al. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite[J]. Mining & Metallurgy, 2004, 13(2): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200402024.htm
[15] ZHU K Y, SU H M, JIANG S Y. Mineralogical control and characteristics of rare earth elements occurrence in carboniferous bauxites from western Henan Province, north China: A XRD, SEM-EDS and LA-ICP-MS analysis[J]. Ore Geology Reviews, 2019, 114.
[16] 朱永红, 殷科华, 李加澍, 等. 遵义仙人岩铝土矿矿物学特征研究[J]. 四川地质学报, 2014, 34(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201401010.htm
ZHU Y H, YIN K H, LI J S, et al. Study of the mineralogy of the Xianrenyan bauxite deposit in Zunyi[J]. Acta Geologica Sichuan, 2014, 34(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB201401010.htm